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Chapter 1

INTRODUCTION

The theory of Brownian motion is one of the simplest models to treat the dynamics of

non-equilibrium systems. The botanist Robert Brown gave the first detailed account of

Brownian motion in 1827. He examined aqueous suspensions of pollen grains of several

species and found that in all cases the pollen grains were in rapid zigzag motion. Initially,

he thought that the movement was not “vital”, but peculiar to the male sexual cells of

plants. Brown investigated whether the motion was limited to organic bodies. He finally

described the motion as [1]:

“Matter is composed of small particles (active molecules) which exhibit a rapid irregular

motion having its origin in the particles themselves and not in the surrounding fluid”.

According to Nelson [1], the first investigator to express a notion close to the modern

theory of Brownian motion was Guoy. We mention the very detailed experimental inves-

tigation made by Gouy in the following seven points

• The motion is very irregular, composed of translations and rotations, and the tra-

jectory appears to have no tangent.

• Two particles appear to move independently, even when they approach one another

to within a distance less than their diameter.

• The smaller the particles, the more active the motion.

• The composition and density of the particles have no effect.

• The less viscous the fluid, the more active the motion.
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• The higher the temperature, the more active the motion.

• The motion never ceases.

An early attempt to explain Brownian movement in terms of collisions was made by von

Nägeli [2]. Following Brown’s work there were many years of speculation [1, 3] as to the

cause of the phenomena before Einstein made conclusive mathematical predictions of a

diffusive effect arising from the random thermal motions of particles in suspension.

1.1 Einstein’s Explanation of the Brownian Movement:

It was Einstein in 1905 who explained Brownian movement essentially by combining

the elementary stochastic process known as the random walk with the Maxwell-Boltzmann

distribution [4]. His ideas may be summarized as follows. If a particle moves in a friction-

less fluid, it receives a blow due to collision with a molecule and the velocity of the particle

changes. However if the fluid is viscous, then the change in velocity is quickly dissipated

and the net result is the change in displacement of the particle. Einstein then assumed

that the cumulative effect of collisions is to produce random jumps in the position of a

Brownian particle,i.e., the particle performs a random walk. Finally he obtained a partial

differential equation for the probability distribution of the displacement in one dimension

[5]. This equation is similar to that of unsteady heat conduction. Einstein obtained the

solution of this equation and showed that the mean-squared displacement of a Brownian

particle should increase linearly with time. Using the fact that Maxwellian distribution

of velocities must hold in equilibrium he was able to express the constants in terms of

temperature and viscosity of the fluid. Perrin verified experimentally this formula for the

mean-square displacement in 1908 [1, 6]. He obtained a value of Avogadro’s number that

agreed within 19% with the present accepted value. This is one of the powerful evidences

of molecular structure of matter. We quote from his 1905 paper [7]:

“According to the molecular kinetic theory of heat, bodies of microscopically visible size

suspended in a liquid will perform movements of such magnitude that they can be easily

observed in a microscope, on account of the molecular motions of heat...On the other

hand, had the prediction of the argument proved to be incorrect a weighty argument
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would be proved against the molecular-kinetic conception of heat.”

1.2 The Langevin Method — Stochastic Differential Equation

The theory of the Brownian movement as formulated by Einstein [3] and Smoluchowski [2]

is far removed from the Newtonian dynamics of particles. In general Langevin’s method

is easier to comprehend than the Fokker-Planck one as it is based directly on the con-

cept of the time evolution of the random variable of the process rather than on the time

evolution of the underlying probability distribution. According to Wang and Uhlenbeck

[8] the Langevin equation is “the real basis of the theory of Brownian motion”. Langevin

introduced the concept of the equation of motion of a random variable (in this case the

position of the Brownian particle) in 1908 [9]. He assumed that the Brownian particle

experiences two forces, namely:

• A systematic force (viscous drag) - ζẋ(t) where x is the displacement of the particle

and ζ is the coefficient of friction.

• A rapidly fluctuating force F(t) due to the impacts of the molecules of the liquid on

the particle . This is the residual force exerted by the surroundings (heat bath).

Thus the equation of motion becomes

m
d2x(t)

dt2
= −ζ dx(t)

dt
+ F (t), (1.1)

where the frictional part follows Stoke’s law which states that frictional force decelerating

a spherical particle of radius ‘a’ and in a surrounding fluid of viscosity η is ζẋ = 6πηaẋ

and fluctuating part obeys

〈F (t)〉 = 0 (1.2)

〈F (t)F (t′)〉 = 2πζkBTδ(t− t′). (1.3)
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1.3 Rotational Brownian Motion

So far we have discussed translational Brownian motion. In 1928 Debye [10, 11] introduced

the Fokker-Planck equation for the rotational Brownian motion in space of a sphere in the

context of dielectric relaxation. W. F. Brown extended this study for the single domain

nanoparticle system in 1963. In his study he assumed that the “giant” magnetic moment

undergoes a rotational Brownian motion on the surface of a sphere. The starting point

of Brown’s treatment of the dynamical behavior of the uniform magnetization of ~M for

the single domain particle is

d ~M

dt
= γ ~M ×

(

− ∂V

∂ ~M
− η

d ~M

dt

)

, (1.4)

where γ is the gyromagnetic ratio, η is a phenomenological damping constant and V (θ, φ)

is the energy. Now Brown proposed that in the presence of thermal agitation the dissipa-

tive “effective field” −η ~̇M describes only the statistical average of the rapidly fluctuating

forces and for an individual particle this is −η ~̇M + ~h(t) where thermal fluctuating field

h(t) follows:

〈h(t)〉 = 0 (1.5)

〈hi(t1)hj(t2)〉 = 2kBTηδijδ(t1 − t2). (1.6)

Finally he obtained the following Fokker-Planck equation [12] for the giant magnetic

moment

∂W

∂t
=

1

sin θ

∂

∂θ

{

sin θ
[(

h′
∂V

∂θ
− g′

sin θ

∂V

∂φ

)

W + k′
∂W

∂θ

]}

1

sin θ

∂

∂φ

{(

g′
∂V

∂θ
+

h′

sin θ

∂V

∂φ

)

W +
k′

sin θ

∂W

∂φ
]. (1.7)

W (θ, φ, t) is the number density of magnetic moment on the surface of the sphere, g ′

is the processional term, h′ is the alignment term. The constant k′ is determined by

using the fact that the stationary solution of Eq. (1.6) should be the Maxwell-Boltzmann

distribution i.e. W0(θ, φ, 0) = Ae−βV (θ,φ). For the simplest uniaxial anisotrpic single

domain particle in the presence of an external magnetic field H which is assumed parallel

to the polar axis, the energy par unit volume is given by

V (θ) = K sin2 θ −MsH cos θ, (1.8)
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where K is the anisotropy constant, Ms is the saturation magnetization, and θ is the

angle between the anisotropy axis and the magnetic moment. If the barrier height (Vmax−
Vmin = K±MsH) is much larger than the thermal energy kBT then the discrete two-state

orientation model is justified. In the Kramers method it is assumed that the equilibrium

is attained within the regions 0 ≤ θ ≤ θ1 and θ2 ≤ θπ. Thus, when V = V (θ) with

minima V1 and V2 at θ = 0 and θ = π and with a maximum Vmax at θm (0 < θm < π), it is

naturally assumed that n1 particles of an ensemble have θ = 0 (orientation 1) and n2 have

θ = π (orientation 2), and a particle in orientation i (= 1 or 2) has probability νij per unit

time of jumping to orientation j (=2 or 1). Then the approach to statistical equilibrium

can be described by rate equations. Hence in the high barrier/low temperature limit

the Fokker-Planck equation (Eq. 1.6) can be re-expressed into coupled two-state rate

equations [13]:

ṅ1 = −ṅ2 = n2ν21 − n1ν12, (1.9)

where ni is the number of particles in the ith (i=1,2) state and ν12, ν21 are rate constants.

1.4 Quantum Brownian Motion

In this section we describe the quantum Langevin equation of a particle coupled linearly

to a quantum-mechanical heat bath and moving in an arbitrary external potential [14-16].

Consider a quantum particle of mass m moving in a one-dimensional potential V(x) and

linearly coupled to a heat-bath at temperature T. The time development of the particle

can be described by the equation

mẍ +
∫ t

−∞
dt′µ(t− t′)ẋ(t′) + V ′(x) = F (t), (1.10)

where the dot and prime denote derivatives with respect to time and x respectively.

This is the Heisenberg equation of motion for the coordinate operator x. Here F(t) is the

operator form of the “noise” whose spectral properties are characterized by the symmetric

correlation and commutator,

〈{Fα(t), Fβ(t′)}〉 = δαβ

2mγ

π

∫ ∞

0
dωh̄ω coth

( h̄ω

2kBT

)

cos[ω(t− t′)], (1.11)

〈[Fα(t), Fβ(t′)]〉 = δαβ

2mγ

iπ

∫ ∞

0
dωh̄ω sin[ω(t− t′)], (1.12)
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where α, β are the Cartesian indices and the angular brackets imply thermal averaging

over the heat bath. This is a general macroscopic phenomenological description of the

system. Here the mean force exerted by the heat bath is linear in the particle motion.

The memory function µ(t) is independent of the potential V(x) and the particle mass m.

It depends only upon the parameters describing the coupling to the bath.

1.5 Physical Application of the Theory of Brownian Motion

In this section we describe physical phenomena to which the Brownian motion theory can

be applied. The work of Einstein on Brownian motion is a remarkable exposition of his

contact with real life phenomena —- it is a description of a new method for determining

the Avogadro number (N) and the size (a) of a molecule. His work on Brownian motion

contains results with an extraordinary range of applications, relevant to:

• Bulk rheological properties of particle suspensions.

• Construction industry, based on granular matter.

• Dairy industry through the colloidal suspension properties.

• Ecology, involving the Brownian movement of aerosol particles in clouds.

The theory of Brownian movement in a potential that has been applied to physical phe-

nomena are:

• The current-voltage characteristics of the Josephson tunneling junction.

• Dielectric and Kerr-effect relaxation of an assembly of dipolar molecules, including

inertial effects and dipole-dipole interaction.

• The mobility of superionic conductors.

• Linewidths in nuclear magnetic resonance.

• Incoherent scattering of slow neutrons.

• Thermalization of neutrons in a heavy gas moderator.
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• Escape of particles over potential barrier.

• Motion of single domain charge-density wave-systems.

• Ferrofluids.

Thus the theory of Brownian movement has wide applications in physical phenomena

which has its ramifications in a variety of context.

1.6 Our Study

In the next four chapters we discuss the rotational Brownian motion of a single domain

nanomagnetic particle. In chapter 2 we discuss statistical thermal equilibrium proper-

ties of noninteracting magnetically anisotropic nanoparticles in the framework of classical

equilibrium statistical physics. Further we analyze the distinguishable features of the

canonical spinglass phase transition and the progressive freezing of supermoments. Next

three chapters are all about non-equilibrium, irreversible processes observed in the nano-

magnetic single domain particles. In this context we elucidate the study of “memory

effect” and “glassy dynamics” observed in single domain particles by using a simple two-

state model, abstracted from an underlying Fokker-Planck equation. Then we extend our

study to distinguish the slow dynamics observed in a “superparamagnetic” system and

a “superspinglass” system. In chapter 5 we introduce a stochastic model to explain the

variation of coercivity with particle size at low temperature as well as at high temperature.

These studies of small nanomagnetic systems have wide spectrum of applications which

range from magnetic recording media, magnetic fluids, magnetic imaging and magnetic

refrigeration, to numerous geophysical, biological, and medical uses.

The Chapter 6 is concerned with the classical Brownian motion of a particle moving in a

periodic potential and in a rapidly oscillating external periodic force. In this context we

discuss a significant amount of diffusion enhancement in the presence of a space dependent

rapidly oscillating force. We have also examined some transport properties like current of

the same system. Amongst several practical implications of this work, we might mention

separation of different species of Brownian particles by identifying minima of the effective

potential, control of the diffusion rates by varying space-dependent external force and
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dynamics of molecular motors like kinesin and myosin.

While the problems treated in chapters 2-6 deal with classical Brownian motion we turn

our attention in chapters 7 and 8 to the analysis of the quantum Langevin equation of a

charged particle moving in a magnetic field and also interacting with its environment. In

the subject of dissipative Landau diamagnetism we show the unification of equilibrium

and non-equilibrium statistical mechanics. Further work is reported on the validity of the

fluctuation-dissipation theorem in the context of Landau-Drude diamagnetism and the

zero temperature coherence to decoherence transition .



Chapter 2

Magnetic and Caloric Properties of Magnetic

Nanoparticles: An Equilibrium Study

2.1 Introduction

Small, magnetically ordered particles are ubiquitous in our daily life [17-21]. The wide

spectrum of applications of these systems which range from magnetic recording media,

catalysts, filtering, phase separation in the mineral processing industry, magnetic imaging,

magnetic refrigeration to numerous geophysical, biological and medical uses is remarkable.

Not only that, these nanometric systems are considered as model systems for various basic

physical phenomena [22, 23]. Hence it is necessary to develop deep understanding of the

equilibrium and non-equilibrium properties of nanomagnetic particles.

The study of the dynamics of noninteracting classical magnetic moments is an interesting

strand of research and seems to be far from exhausted. But before going into a detailed

dynamical study of such small nanoparticles we want to analyze the thermal equilibrium

properties of the same. Therefore, the purpose of this chapter is to gain a deeper insight

into the thermal equilibrium properties of a collection of non-interacting single-domain

nanoparticles with the help of equilibrium classical statistical mechanics.

Throughout this chapter and the next three chapters we concentrate on the study of

magnetic moments of particles dispersed in a solid matrix. These magnetic moments are

linked to the crystal lattice by the magnetic anisotropy. We restrict our study to systems

with axially symmetric magnetic anisotropy which makes the problem easily tractable but

also provides valuable insight into more complex situations.

The magnetic moment of such a nanoparticle consists of single domain structure of fer-

9
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romagnetic spins with a large net spin (S ∼ 103 − 104, supermoment). This spin is

coupled to the environmental degrees of freedom of the host material. Due to dynamical

disturbances of the surroundings, this large spin undergoes a rotational Brownian motion

surmounting the magnetic anisotropy potential barrier [24, 25]. In the high barrier limit,

the magnetic response of noninteracting single domain particles will follow the Neel [24]

relaxation process characterized by the relaxation time

τ = τ0 exp
( ∆Ea

kBT

)

, (2.1)

where τ0 ' 10−10 − 10−13 sec and is related to intra-well motion. Here ∆Ea is the

height of the energy barrier due to anisotropy which equals KV ( K is the anisotropy

constant, and V is the particle volume), kB is the Boltzmann constant and T denotes

absolute temperature. Now depending on the relation between the relaxation time τ and

measurement time tm, different phenomena are observed. When τ << tm, the magnetic

moment exhibits the thermal equilibrium distribution as in a paramagnet. Due to the

large value of S, the name superparamagnets is used. On the other hand, if τ >> tm, the

reversal mechanism is blocked and the magnetic moment stays very close to the energy

minima. Under intermediate condition, (τ ∼ tm) there is non-equilibrium phenomena i.e.

magnetic aging. Hence thermal equilibrium properties are observed when the measure-

ment or observation time tm is much longer than the characteristic relaxation times of

the system.

The subject of spin-glass freezing of many disordered magnetic materials at low temper-

ature is an old one [26-29]. The analogy between the macroscopic behaviour of certain

magnetic “glassy” systems (e.g. Au-Fe alloy) and that of ensembles of fine nanomagnetic

particles is an enigmatic subject and has received recurrent attention during the last few

years [30-33]. However, it is not clear whether all the magnetic properties of fine-particle

systems are the same as those of typical spin-glasses (e.g. Au-Fe alloys). The nature of

spin-glass freezing is still controversial. So detailed studies of magnetic properties of fine

particles are necessary in order to clarify if spin-glass freezing is indeed the progressive

freezing of the super-moments.

The spin-glass transition is characterized by the critical behaviour of nonlinear magnetic

susceptibilities (NLMS). Bitoh et al have shown from the measurement of the suscepti-

bilities χ2n(ω, T ) how to devise a suitable experimental tool to distinguish between the
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spin-glass and the fine-particle attributes. The remarkable feature is the nature of fall of

χ2n as T increases above the peak temperature. Unfortunately, theoretical descriptions of

NLMS of noninteracting fine-particles are very rare [34, 35]. The first theoretical descrip-

tion on NLMS was given by Jönson et al [34] and later on extended by Garcia-Palacios

et al [35].

2.2 Effective Hamiltonian and Partition Function

We mainly consider systems where the magnetic anisotropy energy has the simplest axial

symmetry. When an external field ~B is applied the total magnetic energy is

H(~m) = −KV
m2

(~m.n̂)2 − ~m. ~B, (2.2)

where n̂ is a unit vector along the anisotropy axis. Introducing the unit vectors ê in the

direction of the magnetic moment, ~m (ê = ~m
m

), b̂ in the direction of the magnetic field

(b̂ =
~B
B

) and dimensionless anisotropy and field parameters σ = KV
kBT

and ξ = mB
kBT

one can

express Eq. (2.2) as

−βH = σ
(

ê.n̂
)2

+ ξ
(

ê.b̂
)

(2.3)

We choose the anisotropy axis n̂ as the polar axis of a spherical co-ordinate system. (θ, φ)

eb

φ

X

γ

Y

θ

nZ

Figure 2.1: Coordinate system showing the unit vectors ê, b̂ and n̂ along with the referred

angles.

and (γ, 0) denote the angular co-ordinate of ê and b̂ respectively. Then the total magnetic

potential is given by

−βH = σ cos2 θ + ξ‖ cos θ + ξ⊥ sin θ cosφ, (2.4)
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where, ξ‖ = ξ cos γ and ξ⊥ = ξ sin γ. The partition function associated with the Hamilto-

nian (cf. Eq. (2.4)) is defined as

Z =
∫ π

0
dθ sin θ exp(σ cos2 θ + ξ‖ cos θ)I0(ξ⊥ sin θ), (2.5)

where I0(y) is the zeroth order modified Bessel function of the first kind [36]. After some

algebra one can show

Z = 2R(σ)
∞
∑

i=0

Ci(σ, γ)

i!
ξ2i, (2.6)

where,

Ci(σ, γ) = i!
i

∑

k=0

bi−k,k(γ)
k

∑

m=0

(−1)m k!

m!(k −m)!

R(i−k+m)(σ)

R(σ)
. (2.7)

bi,k(γ) =
1

(2i)!22k(k!)2
cos2i γ sin2k γ, (2.8)

and

R(l)(σ) =
∫ 1

0
dzz2l exp(σz2) (2.9)

The partition function hence obtained helps further calculation of the equilibrium prop-

erties.

2.3 Equilibrium Properties

In this section we discuss a number of important thermodynamic quantities of non-

interacting magnetic nanoparticles with axially symmetric magnetic anisotropy. In par-

ticular, we analyze the effect of magnetic anisotropy on the magnetization (M) as well

as the linear (χ0) and nonlinear (χ2, χ4) susceptibilities. The differences and similarities

of the linear and nonlinear susceptibilities between canonical spinglass systems, such as

Au96Fe4 [37-39] and magnetic nanoparticle systems, such as Cu97Co3 [33], are presented.

2.3.1 Magnetization

The magnetization along the external field direction for classical spins with axially sym-

metric magnetic anisotropy is defined as follows

MB = 〈~m.b̂〉eq = m
∂

∂ξ
(lnZ). (2.10)
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Taking derivative with respect to ξ of the low-ξ expansion of lnZ, we obtain

MB = m
[

2C1ξ + 2(C2 − C2
1 )ξ3 + (C3 − 3C2C1 + 2C3

1)ξ
5 + ...] (2.11)

where the co-efficients Ci are given by Eq. (2.7). We now study Eq. (2.11) for particular

cases.

(i)Isotropic case (σ = 0): In this case C1 = 1
6
, C2 = 1

60
, C3 = 1

840
...... and so on. Thus we

obtain

MB,Lan = mL(ξ), (2.12)

where L(ξ) is the Langevin function.

(ii)Ising case (σ → ∞): In this regime C1 = cos2 γ
2

, C2 = cos4 γ
12

, C3 = cos6 γ
120

and so on.

Thus the magnetization becomes

MB,Ising = m cos γ tanh ξ‖. (2.13)

It shows that the magnetization vanishes when ~B is perpendicular to the anisotropy axis

n̂.

(iii)Plane rotator case (σ → −∞): In this case C1 = sin γ
4

, C2 = sin4 γ
32

, C3 = sin6 γ
384

and so

on.

MB,rot = m sin γ
I1(ξ⊥)

I0(⊥)
. (2.14)

In this case the magnetization vanishes when ~B is perpendicular to the rotator plane.

(iv)Longitudinal field case ( ~B‖n̂): Now we have C1 = R′

2R
; C2 = R′′

12R
; C3 = R′′′

120R
and so on.

Now the magnetization becomes

MB,‖ = m
[R′

R
ξ +

1

2

(1

3

R′′

R
− (

R′

R
)2

)

ξ3 + ....
]

. (2.15)

Here one can easily note that MB depends on B and T through ξ in all the first three

cases. So the magnetization versus B
T
(∼ ξ) curves corresponding to different temperatures

collapse onto a single master curve as shown in Fig. 2.2(a). However outside these three

limiting cases, T does not enter in MB via B
T

only, but MB depends on ξ as well as σ

also. This is shown in Fig. 2.2(b) for the longitudinal field case. As T decreases, one can

see the crossover from the high temperature isotropic regime to the low temperature Ising

regime. This crossover is induced by the magnetic anisotropy.
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Figure 2.2: (a)Magnetization versus field curves corresponding to different temperatures

for the isotropic case (red), for the Ising case (green) and for the plane-rotator case

(blue); (b)Magnetization versus longitudinal field showing the non-B
T

superposition of the

magnetization curves.

2.3.2 Linear Susceptibility (χ0)

We now study the linear susceptibility of classical “superspin” with axially symmetric

magnetic anisotropy. We start our discussion with the low-field expansion of the magne-

tization (H = B
µ0

)

MB = χ0H + χ2H
3 + χ4H

5 + ....., (2.16)

where χ0 is the linear susceptibility and χ2, χ4 are the nonlinear susceptibilities. Com-

paring Eqs. (2.11) and (2.16) we obtain

χ0 = 2mC1 =
µ0m

2

kBT
2C1(σ, γ). (2.17)

Thus the general expression of linear susceptibility is given by

χ0 = χ
‖
0 cos2 γ + χ⊥0 sin2 γ, (2.18)

where χ
‖
0 = µ0m2

kBT
R′

R
; χ⊥0 = µ0m2

kBT
R−R′

2R
. Figure (2.3) shows the polar plot of linear suscepti-

bility as a function of the angle between the anisotropy axis and the probing field for the

easy-axis anisotropy and easy-plane anisotropy for various values of σ. It shows that larger

the |σ|, the χ0 curves become more anisotropic. The limiting cases of the linear susceptibil-

ity for the four regimes are χLan
0 = µ0m2

3kBT
; χIsing

0 = µ0m2

kBT
cos2 γ; χP lane−Rotator

0 = µ0m2

2kBT
sin2 γ;

and χ
‖
0 = µ0m2

kBT
R′

R
. In Fig. 2.4(a) we plot the reduced linear susceptibility versus dimen-

sionless anisotropy parameter in the longitudinal and transverse field cases. Both curves
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Figure 2.3: Polar plot of χ0 versus γ for different values of σ (a) easy-axis anisotropy (b)

easy-plane anisotropy.
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Figure 2.4: (a)Plot of linear susceptibility versus σ in the longitudinal (red) and transverse

(green) field cases; (b) log-log plot of χ0 versus 1
σ

for the isotropic case (red), Ising case

(green), plane-rotator case (blue) and the randomly distributed anisotropy case (pink).

coincide at σ = 0 taking the Langevin value of 1
3
. It is understood from Fig. 2.4(a) that

the longitudinal and the transverse field cases interchange their roles when the sign of the

anisotropy is changed. Figure 2.4(b) shows the log-log plot of the linear susceptibility ver-

sus the dimensionless temperature ( 1
σ
). As the influence of the anisotropy decreases with

the increase of temperature, χ0 undergoes a smooth crossover from the low-temperature

Ising regime to the high-temperature Langevin case. The slope of the curves are one which

occur in the asymptotic regime (T−1) dependence, but deviation from this inverse tem-

perature dependence is sizable in the transitional region. In this transitional region the

slope is less than one. The temperature dependence of the longitudinal and transverse

component of the linear susceptibility seem to have broad peaks (Fig. 2.5(a), 2.5(b)).
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Both χ
‖
0 and χ⊥0 show broad peak. Bitoh et al [33, 40] have shown temperature depen-

dence of χ0 in Cu97Co3 fine particle system and in Au96Fe4 spinglass system. The peak

of Cu97Co3 is broad compared to that of Au96Fe4. So our theoretical results (Fig. 2.5)

qualitatively reproduce the experimental results.
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(a) (b)

Figure 2.5: (a) Longitudinal and (b) transverse components of the linear susceptibility

versus 1/σ with h = 0.006 (red), h = 0.011 (green) and h = 0.016 (blue) and these curves

exhibit spinglass like maximum.

2.3.3 Nonlinear Susceptibilities (χ2, χ4)

We now study the nonlinear susceptibilities of classical spins with uniaxial magnetic

anisotropy. The main goal of this study is to invoke the suitability of these quantities

in the study of collective phenomena of glassy systems and also the glassy like behavior

of some fine particles (Cu97Co3). Bitoh et al [33, 40] have shown that χ2 gives the key

to clarify the differences between the spinglass transition and the progressive freezing of

the supermoments. In this subsection we present a rigorous theoretical analysis of these

nonlinear magnetic susceptibilities and discuss their different properties for the classical

spins as well as for the spinglass system.

The nonlinear susceptibilities are defined as the coefficients of the nonlinear terms in

the expansion of the magnetization in powers of the external field. Now comparing Eqs.
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(2.11) and (2.16) we obtain

χ2 =
µ3

0m
4

(kBT )3
2
(

C2 − C2
1

)

, (2.19)

χ4 =
µ5

0m
6

(kBT )5

(

C3 − 3C2C1 + 2C3
1

)

. (2.20)

In Fig. 2.6 we plot the angular dependence of the reduced nonlinear susceptibility χ2

in the cases of easy-axis anisotropy and easy-plane anisotropy for various values of σ.

It is seen that χ2 curves become more anisotropic as |σ| increases and becomes quite

different from circles for |σ| > 0. The sizes of the isotropic case is different for K > 0 and

K < 0 cases because the maximum values of χ2 for K > 0 and K < 0 are quite different.

Figures 2.7 and 2.8 display the angular dependence of χ4 for the K > 0 and K < 0 cases

respectively. Let us consider various particular cases for the nonlinear susceptibilities.
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Figure 2.6: Polar plot of χ2 versus γ for different values of σ (a) easy-axis anisotropy (b)

easy-plane anisotropy.

(i)Isotropic case (σ = 0):

χ2 = − µ3
0m

4

45(kBT )3
(2.21)

χ4 =
2

945

µ5
0m

6

(kBT )5
. (2.22)

(ii)Ising case (σ → ∞):

χ2 = − µ3
0m

4

3(kBT )3
cos4 γ (2.23)

χ4 =
2

15

µ5
0m

6

(kBT )5
cos6 γ. (2.24)
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Figure 2.7: Polar plot of χ4 versus γ for different values of σ for the easy-axis anisotropy.

(ii)Plane rotator case (σ → −∞):

χ2 = − µ3
0m

4

16(kBT )3
sin4 γ (2.25)

χ4 =
1

96

µ5
0m

6

(kBT )5
sin6 γ. (2.26)

(ii)Longitudinal field case (~b‖n̂):

χ2 =
µ3

0m
4

(kBT )3

[1

2

(1

3

R′′

R
− (

R′

R
)2

)]

(2.27)

χ4 =
µ5

0m
6

(kBT )5

[1

4

( R′′′

30R
− R′′R′

2R2
+ (

R′

R
)3

)]

. (2.28)

Figure 2.9(a) shows χ2 versus σ in the longitudinal and transverse field cases as well as

for the anisotropy axes distributed at random. These three curves coincide at σ = 0 and

take the Langevin value − 1
45

. The large deviation for the anisotropy is observed in the

parallel field case. This deviation is dramatically reduced for the random distribution of

anisotropy axes. The longitudinal and the transverse field cases interchange their roles

when the sign of the anisotropy is reversed. In Fig. 2.9(b) we show the log-log plot of

χ2 versus 1
σ

for the Ising case, plane rotator case, isotropic case and for the random dis-

tribution of anisotropy axes. We can see a smooth crossover from low temperature Ising

regime to the high temperature isotropic regime. In the transitional regime the depar-

ture of χ2(T ) from an inverse temperature-cubed law is sizable. Figure 2.10(a) shows the
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Figure 2.8: Polar plot of χ4 versus γ for different values of σ for the easy-plane anisotropy.

log-log plot of χ4 versus dimensionless temperature for different limiting cases like Ising,

isotropic, plane rotator and the randomly oriented anisotropy axes. It is seen that as the

influence of anisotropy decreases with increasing T, χ4 goes smoothly from the high tem-

perature isotropic regime to low temperature Ising regime. The transition region is very

wide in range and in the transition region there is a significant deviation from the T −5

law. On the other hand, Fig. 2.10(b) shows χ4 versus σ in the longitudinal, transverse

and the random distributed anisotropy axes cases. The three curves coincide at σ = 0

and they take the Langevin value 2
945

. Although the large deviation from the Langenvin

result is observed in the parallel field case, the deviation in the perpendicular field case

is comparable to that of the parallel case. The random distribution of anisotropy axes

reduces this anisotropy induced departure. One can notice that qualitatively the nature of

χ
‖
4 and χ⊥4 are just opposite to that of the χ

‖
2 and χ⊥2 . Again the roles of the longitudinal

and the transverse field cases are interchanged when the sign of the anisotropy is reversed.

We discuss the canonical spinglass phase transition based on the mean field theory. The

first attempt to make the mean field theory of spinglass was done by Edwards and An-

derson [26]. The Hamiltonian for the system is

H = −1

2

∑

<ij>

Jij
~Si.~Sj −H

∑

i

Sz
i , (2.29)
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Figure 2.9: (a) Plot of χ2 versus σ in the longitudinal (red), transverse (green) field and

random distribution (blue) cases; (b) log-log plot of χ2 versus 1
σ

for the isotropic case (red),

Ising case (green), plane-rotator case (blue) and the randomly distributed anisotropy case

(pink).

where ~Si is the spin vector on site i, Sz
i is the component of ~Si along the applied field H.

The exchange coupling constants Jij are randomly chosen according to a fixed distribution

p(Jij) =
1√

2πJ0

exp
[

− −(Jij − J)2

2J2
0

]

, (2.30)

where J is a mean value and J0 is a variance of the distribution. Following Suzuki et al

[41] one can show that the order parameter susceptibility is

χsg ' 1

2k2
BT

2
g

( Tg

T − Tg

)

, (2.31)

where spinglass transition temperature Tg is
√

zJ0

kB
. z is the number of nearest neighbor

spins. Now following Wada et al [42] and Sherrington et al [43] we obtain for the linear

susceptibility χ0 ∼ (χsg)
1
2 . Thus

χ0 =
1

√

2k2
BT

2
g

( Tg

T − Tg

) 1
2 . (2.32)

The nonlinear susceptibilities χ2 and χ4 are given by

χ2 = − 1

2k3
BT

3
g

( Tg

T − Tg

)

(2.33)

χ4 =
1

32k5
BT

5
g

( Tg

T − Tg

) 3
2 (2.34)
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Thus both the linear and nonlinear susceptibilities of canonical spinglass systems diverge

at Tg obeying Eqs. (2.32), (2.33) and (2.34) respectively. χ0 and χ4 diverge positively

whereas χ2 diverges negatively at Tg. On the other hand we have seen that both the linear

susceptibility and χ4 show broad positive peak and χ2 has a negative broad peak. The

temperature dependence of χ0, χ2 and χ4 are quite different for the classical superspins

and that of the canonical spinglass systems.

2.4 Caloric Properties

In this section we discuss the caloric quantities like energy, entropy and specific heat in a

number of particular situations.

(i)Isotropic case (σ = 0): In this case internal energy is

uLan = −m
(

coth ξ − 1

ξ

)

. (2.35)
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The entropy is formulated as

SLan

kB

= ln
(2 sinh ξ

ξ

)

− ξ
(

coth ξ − 1

ξ

)

. (2.36)

The Langevin specific heat is given by

CB,Lan

kB

= 1 − ξ2

sinh2 ξ
. (2.37)

(ii)Zero field case: In this case the mean energy is given by
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Figure 2.11: Inverse temperature dependence of (a) u, (b) S, and (c) specific heat for the
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uunb = −KV R
′

R
. (2.38)

Zero field entropy and specific heat are given by

Sunb

kB

= ln(2R) − σ
R′

R
, (2.39)

cB,unb

kB

= σ2
[R′′

R
− (

R′

R
)2

]

. (2.40)
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case.

(iii)Ising case (σ → ∞): In the Ising regime internal energy and entropy are given by

uIsing = −
[

KV − KV

σ
+mB cos γ tanh ξ‖

]

(2.41)

SIsing

kB

= σ − ln σ + ln(cosh ξ‖) − β(KV − KV

σ
+mB cos γ tanh ξ‖)

]

. (2.42)

and the specific heat is

cB,Ising

kB

= 1 + ξ2 cos2 γsech2(ξ cos γ) − ξ cos γ tanh(ξ cos γ). (2.43)

(iv)Plane-rotator case (σ → −∞): In this limiting condition internal energy, entropy and

specific heat are given by

urot =
KV

2σ
− I1(ξ⊥)

I0(ξ⊥)
mB sin γ, (2.44)

Srot

kB

= −1

2
+
ξ⊥I1(ξ⊥)

I0(ξ⊥)
, (2.45)

cB,rot

kB

= −1

2
− ξ2

⊥
[I0(ξ⊥)I2(ξ⊥) − I2

1 (ξ⊥)

I2
0 (ξ⊥)

]

. (2.46)

(v)Longitudinal field case: In this case internal energy is given by

u‖ = KV
[

h2 − (1 + h)3R′(σ+) + (1 − h)3R′(σ−)

(1 + h)R′(σ+) + (1 − h)R′(σ−)
, (2.47)
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Figure 2.14: Inverse temperature dependence of (a) u, (b) S, and (c) specific heat for the

plane-rotator case.

where σ± = σ(1 ± h)2 and h = ξ
2σ

. The entropy and specific heat are given by

S‖ = ln
[

(1 + h)R(σ+) + (1 − h)R(σ−)
]

− σ
(1 + h)3R′(σ+) + (1 − h)3R′(σ−)

(1 + h)R′(σ+) + (1 − h)R′(σ−)
(2.48)

cB,‖
kB

=
{(1 + h)5R′(σ+) + (1 − h)5R′(σ−)

(1 + h)R′(σ+) + (1 − h)R′(σ−)
−

[(1 + h)3R′(σ+) + (1 − h)3R′(σ−)

(1 + h)R′(σ+) + (1 − h)R′(σ−)

]2}

σ2.

(2.49)

In all the above mentioned limiting cases, specific heat obeys a T−2 law at high tem-

peratures and tends to nonzero values at low temperatures. This last fact does not obey

Nernst’s theorem which states that Cv → 0 as T → 0. This actually occurs due to the

classical nature of the spins. In the longitudinal field case, entropy and specific heat both

display a maximum. The height and location of this maximum depend on the applied

field. At high fields Zeeman energy dominates over the anisotropy energy and thus the

maximum is smeared out and its height decreases. This maximum can be understood in

terms of crossover from high temperature isotropic regime to the low temperature Ising

regime.
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2.5 Summary and Conclusions

We have studied the magnetic and caloric properties of non-interacting anisotropic nanopar-

ticles. Through the low field expansion of magnetization, we derive linear (χ0) and

non-linear susceptibilities (χ2, χ4) for a number of particular situations. In this anal-

ysis we have examined the effect of anisotropic potential on these magnetic properties

of superparamagnetic fine particles. This anisotropic potential induces a crossover from

free-rotator to either two-state or plane-rotator regime. In the crossover regime the tem-

perature dependence of χ0, χ2 and χ4 are much steeper than those of the limit inverse-

temperature power laws (T−1, T−3 and T−5) respectively. This might misleadingly suggest

the presence of inter-particle interaction because the non-linear susceptibilities resemble

the high-temperature ranges of divergence at low temperature. Thus we have drawn out

the basic differences between the canonical spinglass phase transition (e.g. in Au96Fe4)

and the progressive freezing of the supermoments (e.g. in Cu97Co3). The linear suscep-

tibility χ0 and non-linear susceptibility χ4 show positive peak whereas χ2 has a negative
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peak for the superparamagnetic fine-particle systems. However, the negative peak in χ2

and positive peaks in χ0 and χ4 are very broad compared with that of the spinglass

systems. The roundness of the peak and the width of the susceptibility curves are the

distinguishing features between the spinglass phase transition and the progressive freezing

of the supermoments. The analysis of the caloric properties show the essential role of the

anisotropic potential and it proves the classical nature of the “supermoments”.

The above analysis indicates that the origin of magnetic properties of superparamagnetic

fine particles and spinglasses is very different, though the behavior of linear susceptibility

and the magnetization of fine particles is similar to those of spinglasses. The non-linear

susceptibilities play a crucial role in distinguishing canonical spinglass phase transition

and the progressive freezing of supermoments. In conclusion, we can state that our study

will help distinguish between the spinglass transition and the progressive freezing of “su-

permoments”.



Chapter 3

Memory in a Magnetic Nanoparticle System -

Polydispersity and Interaction Effects.

3.1 Introduction

Since the pioneering work of Neel almost six decades ago [24], the magnetic properties of

nanoparticles have attracted immense attention due to their significance in both techno-

logical applications and fundamental research [17-21]. These systems can be considered as

very good model systems for rotational Brownian motion, thermally activated multistable

phenomena [22] and stochastic resonance [23].

The magnetic moment of the nanoparticle is a giant moment of a single domain compris-

ing ferromagnetic spins with a large net spin (S ∼ 103 − 104, supermoment). This spin

is coupled to the environmental degrees of freedom (eg. phonons) of the host material.

Due to dynamical disturbances of the surroundings this large spin undergoes a rotational

Brownian motion surmounting the magnetic anisotropy potential barrier [24, 25]. In the

high barrier limit, the magnetic response of noninteracting single domain particles will

follow a Neel [24] relaxation process characterized by the relaxation time

τ = τ0 exp
( ∆Ea

kBT

)

, (3.1)

where τ0 ' 10−10 − 10−13 sec. The parameter τ is related to intrawell motion, the height

of the energy barrier due to anisotropy ∆Ea = KV ( K is the anisotropy constant, and

V is the particle volume) as well as the thermal energy. In Eq. (3.1) kB is the Boltzmann

constant and T is the absolute temperature. For our purpose K would be treated as a

parameter whose typical value is about 10−1 Joule/cm3. Therefore, at room temperature,

27
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τ can be as small as 10−1 sec for a particle of diameter 11.5 nm but can be astoundingly as

large as 109 sec for a particle of diameter just about 15 nm. Thus, a slight polydispersity

(i.e., a distribution in the volume V) can yield a plethora of time scales, giving rise to

interesting slow dynamics. Depending on the relation between the relaxation time τ and

measurement time tm, different phenomena are observed. When τ << tm, the magnetic

moment exhibits the thermal equilibrium distribution as in a paramagnet. Due to the

large value of S, the name superparamagnet is used. On the other hand, if τ >> tm, the

reversal mechanism is blocked and the magnetic moment stays very close to the energy

minima. The crossover mark, derived from the temperature dependence of τ , yields the

concept of ‘blocking temperature’ (TB). Under intermediate condition (τ ∼ tm), there

is interesting time-dependent phenomena. Thus single-domain magnetic particles have

been a happy hunting ground for studying non-equilibrium physics, characterized by ir-

reversibility, hysteresis and other memory effects.

In recent times this subject has attracted a great deal of attention in view of the height-

ened interest in Nanoscience and magnetic memory devices. As it turns out, it is not

just the temperature T which can be used as a control parameter but even the mean size

and the distance between the particles can be profitably tuned because of the exponential

dependence of τ on the volume (V) of the particle [44-50]. Thus polydispersity leads to a

distribution of relaxation times [51, 52], those larger than the measurement time yielding

‘frozen’ behavior, whereas those shorter giving rise to ‘magnetic viscosity’ [49, 50]. A

given sample then displays strong memory effects which are reported here. Our results

are based on the measurements of temperature-dependent magnetization during cooling

and heating cycles. These memory effects may have important device applications in the

future [45] . Here we report the theory of relaxation, relevant to magnetization and co-

ercivity measurements, and back up our theory results with qualitative comparison with

experimental data.

The system we employ for our investigation is nickel ferrite single domain nanoparticles

(NiFe2O4) embedded in a host nonmagnetic SiO2 matrix. We prepared the following

two specimen samples by using the sol-gel technique [53]. Sample A, which contains 35%

NiFe2O4 (by volume) making possible a weak dipolar interaction between the magnetic

nanoparticles, and sample B, which contains 15% NiFe2O4 (by volume) yield an almost
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noninteracting sample. Both X-ray photograph and TEM micrograph suggest that the

mean interparticle separation is 5 nm for specimen A and is 15 nm for specimen B,

whereas for each specimen the average particle radius is ' 3nm.

In the next section we review the basic relaxation theory of single-domain magnetic par-

ticles and specialize to the case of large uniaxial anisotropy vis-a-vis the thermal energy.

In this limit the relaxation dynamics can be described in terms of a two-state rate theory.

We motivate next a mean field theory in order to incorporate a weak dipolar interaction

between the magnetic particles. The theory developed in the next section is employed to

interpret the irreversible magnetization measurements in the field-cooled (FC) and zero

field-cooled (ZFC) processes.

3.2 Relaxation Theory

We assume for the sake of simplicity that the anisotropy, responsible for single-domain

behaviour of the magnetic nanoparticle, is uniaxial governed by the energy:

E(Φ) = V K sin2 Φ (3.2)

In Eq. (3.2), V is the volume of the particle, K is a parameter referred to in the literature

as the anisotropy energy, and Φ is the angle between the anisotropy axis and the direction

of the ’giant’ magnetic moment of the single-domain particle. Because of thermal fluctu-

ations the magnetic moment undergoes rotational Brownian motion over an anisotropy

barrier in Eq. (3.2), in which Φ(t) is a continuous stochastic process as a function of

the time t [25]. However it turns out that if V K >> kBT , kB being the Boltzmann

constant and T is the absolute temperature, the magnetic moment is mostly locked in

two orientations, corresponding to Φ = 0 and Φ = π, with slow relaxation between the

two configurations. Thus we are in the so-called ‘Ising’ limit in which Φ(t) may be viewed

as a dichotomic Markov process, in which it jumps at random between the angles 0 and

π at a rate governed by the Arrhenius-Kramers formula:

λ0→π = λπ→0 = λ0 exp(−KV

kBT
), (3.3)
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where λ0 is the ‘attempt’ frequency which is the inverse of τ0 in Eq. (3.1). In what follows

we restrict our discussion to the Ising case wherein the magnetic moment vector points

either parallel or antiparallel to the anisotropy axis.

We now discuss the effect of interaction which we assume to be dipolar in nature. It
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Figure 3.1: Room temperature dc M-H measurement of interacting sample A and nonin-

teracting sample B. The solid lines are drawn through the experimental points, indicated

by dots.

is well known that dipolar interactions, being long-ranged, anisotropic and alternating in

the sign of interaction, can indeed lead to very complex magnetic order [54]. However, our

dc M-H measurement, exhibited in Fig. 3.1, indicates that even for specimen A for which

the dipolar interaction is relevant, there is no shift of the hysteresis loop, thereby implying

that the bulk magnetization, for the zero applied field, is zero. Our interpretation is that

because of the largeness of anisotropy energy as mentioned above, we are operating in

the Ising limit of the dipolar interaction, for which the local field, in the mean field sense,

points parallel or antiparallel to the anisotropy axis, with equal probability. The dipolar

coupling can now be described by its ‘truncated’ form [55]:

Hd−d =
∑

ij

γiγjh̄
2 (1 − 3cos2θij)

| ~rij|3
mzimzj, (3.4)

where γi and γj are the gyromagnetic ratio of the ith and jth particle respectively, ~rij is

the vector distance between the ‘sites’ at which the two magnetic particles are located, θij
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is the angle between ~rij and the anisotropy axis and mzi is the (giant) magnetic moment

for the ith nanoparticle along the direction of anisotropy axis (i.e. Z). Given the fact that

m is proportional to the volume V of the particle, Eq. (3.4) can be rewritten as

Hd−d = µ2V 2
∑

ij

γiγjh̄
2 (1 − 3cos2θij)

| ~rij|3
cos Φi cos Φj, (3.5)

where µ is the magnetic moment per unit volume and Φ has the same definition as in

Eq. (3.2). The interaction in Eq. (3.5), along-with that given in Eq. (3.2), is quite

complicated to treat in detail. For the purpose of this chapter we invoke a mean field

theory in which each magnetic nanoparticle is visualized to be embedded in an effective

medium which creates a local magnetic field at its site. Thus in this approximation, Hd−d

is replaced by its mean field(MF) form :

HMF
d−d = γh̄µ2V 2 cos Φ

∑

j

γjh̄
(1 − 3cos2θij)

| ~rij|3
〈cos Φj〉, (3.6)

wherein the angular brackets 〈...〉 represent a thermal average. Further, in accordance

with our assumption about the largeness of the anisotropy energy, cos Φ can be replaced

by a two-state Ising variable σ :

HMF
d−d = γh̄µ2V 2σ

∑

j

γjh̄
(1 − 3cos2θij)

| ~rij|3
〈σj〉, (3.7)

In line with this approximation each particle can be viewed to be subjected to a local

magnetic field H such that

HMF
d−d = µV σH, (3.8)

H = µΛV 〈σ〉, (3.9)

where Λ is a parameter that subsumes all the other constants. Note that we have dropped

the suffix j on σ, implying that we consider the embedding medium to be homogeneous.

Within the proposed self-consistent mean field theory, H can be expressed as

H = µΛV tanh(
µV H

kBT
). (3.10)

Note that Eq. (3.10) admits both positive and negative solutions for H, in accordance

with our discussion preceding Eq. (3.4). Further, within the present approximation in
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which Φ is restricted to the value 0 and π, the anisotropy energy in Eq. (3.2) dose not

figure in the expression for H. We now turn our attention to relaxation kinetics. The

dichotomic Markov process, mentioned in the paragraph preceding Eqs. (3.4 - 3.5), yields

the following set of rate equations for the number of magnetic particles with a specific

orientation of their magnetization:

d

dt
n0(t) = −λ0→πn0(t) + λπ→0nπ(t), (3.11)

d

dt
nπ(t) = λ0→πn0(t) − λπ→0nπ(t), (3.12)

where the subscripts on n indicate the two allowed values of Φ. Solving Eqs. (3.11) and

(3.12), we may derive for the time-dependent magnetization M(t):

M(t) ≡ V µ[n0(t) − nπ(t)]

= M(t = 0) exp(−λ̄t)

+µV N
∆λ

λ̄
[1 − exp(−λ̄t)]. (3.13)

In Eq. (3.13),

N = n0 + nπ, (3.14)

which is a constant,

λ̄ = λ0→π + λπ→0, (3.15)

and

∆λ = λπ→0 − λ0→π. (3.16)

The expressions for the rate constants necessitate now a generalization of Eq. (3.3) in

view of the dipolar interaction, and are given by:

λ0→π = λ0 exp
[

− KV

kBT

(

1 +
Hµ

2K

)2](

1 +
Hµ

2K

)

, (3.17)

and λπ→0 is obtained by switching the sign of H. We conclude this section by reiterating

a few remarks on the theory presented here. First, we have assumed at the outset that

the anisotropy is large, a very good assumption in the context we believe, which has

allowed us to approximate a continuous stochastic process by its discrete version. The

anisotropy barrier does not appear in equilibrium properties (cf. Eq. (3.10)) but does
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strongly influence relaxation kinetics (cf. Eqs. (3.17) and (3.18)). Our second remark

concerns the dipolar interaction, which is treated in mean field theory. This interaction,

though weak, has a significant contribution to the relaxation effects (cf. Eqs. (3.17) and

(3.18)). In particular, and in the context of magnetic nanoparticles, the relaxation rates

acquire a V 2-dependent term in the exponent (see also Eqs. (3.9) and (3.10)) in addition

to an effective temperature-dependent tan-hyperbolic term.

3.3 Polydispersity-linked Memory Effects

Having discussed the effect of slowing down of relaxation due to the weak interaction

between magnetic nanoparticles in terms of the theory developed in the previous section,

we now focus our attention to another important attribute, viz., the volume-distribution

of the nanoparticles. We show that such a distribution leads to striking memory effects

in our low-temperature DC magnetization measurements on the NiFe2O4 nanomagnetic

particles embedded in SiO2 matrix.

The magnetization measurements are carried out in accordance with the following cooling

and heating protocol. At T=300K (T = T∞), a small magnetic field (h = 50 Oe) is

applied and the magnetization(M) measured. Keeping the field on, the temperature(T)

is lowered continuously at a steady rate to Tn and M is simultaneously measured upto

the temperature Tn. Thus one obtains M versus T in the cooling regime (Tn ≤ T ≤ T∞).

At Tn the field is switched off and the drop of M is monitored for several (≈ 4) hours.

Subsequently, the magnetic field is switched back on and M(T) versus T is mapped in

the cooling regime(Tn−1 ≤ T ≤ Tn). At Tn−1 the field is switched off again and the

process of measurement repeated, until the lowest temperature T0 is reached. Thus, one

obtains field-cooled response and zero-field relaxation of the magnetization as a function

of temperature. At the end of the cooling cycle, at T0, the field is turned on and M(T)

monitored as the system is heated from T0 through Tn−2,Tn−1,Tn and eventually to T∞,

the magnetic field remaining on throughout. Our results are shown in Fig. 3.2, for

sample A and sample B. The heating path surprisingly shows wiggles in M(T) at all

the T steps Tn−2,Tn−1,Tn where h was earlier switched off during cooling, apparently
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retaining a memory of the temperature steps at which the cooling was arrested. One
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Figure 3.2: Experimental M(T) curves during cooling (◦ red) in a small magnetic field

h = 50 Oe and zero-field heating (2 black) for the (a) interacting and (b) non-interacting

samples showing prominent memory effects. A constant heating/cooling rate of 2K/min

was maintained except at 60K, 40K and 20K where the cooling was arrested for 4 h

duration at each temperature during which time h was switched off.

tantalizing aspect of our results is that memory effects are more prominent for sample B

than for sample A, although in the latter the average inter-particle distance is smaller and

hence the dipolar interaction non-negligible. Recently Sun et al [51] have reported very

similar history dependent effects in the magnetization measurements of a monolayer of

sputtered permalloy(Ni81Fe19) clusters on a SiO2 substrate. These authors attribute the

disparate cooling and heating histories to aging and concomitant memory effects found

in a spin glass phase [56]. Spin glass transitions are known to occur due to disorder

and frustration in dilute magnetic alloys that are characterized by a complicated free

energy landscape with deep valleys and barriers [57] . Strongly non-equilibrium memory

dependent behavior ensues as a result of the system getting trapped in a deep valley such

that the relaxation time(τ) for deactivation becomes long compared to experimental time
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scales of measurement [58].

Our interpretation of the results shown in Fig. 3.2 is very different from that of [51]. We

demonstrate below that the observed phenomena are not connected to complicated spin

glass type interactions but can be simply attributed to a superposition of relaxation times,

arising from particle size distribution, as it were, in noninteracting single-domain magnetic

particles. Experimentally it is known [52] that nanoparticle sizes are usually distributed

according to a log-normal distribution. However, we show below that the exact form of

the distribution is irrelevant for explaining the memory effect. In fact, in order to keep the

analysis simple and to obtain a clear understanding of the physics it is sufficient to take

a sample size distribution consisting of two delta function peaks so that there are only

two kinds of particles “large” (volume V1) and “small” (V2). Correspondingly we have

only two relaxation times τ = τ1 and τ2 in our model, if we remember that(cf. Eqs. (3.17) :

τ(V ) = exp
[

− KV

kBT

(

1 +
Hµ

2K

)2](

1 +
Hµ

2K

)

. (3.18)
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The interpretation of the observed results hinges on the premise that the time τ1 is

much larger than the measurement time while τ2 is much smaller, at the lowest measured

temperature (T0). Both τ1 and τ2 are expected to be smaller than the measurement

time at the highest temperature T∞. Therefore, in the intermediate temperature domain

(T0 ≤ T ≤ T∞), the small particles equilibrate rapidly, thus showing superparamagnetic

viscosity [50] while the large particles are ‘blocked’. This is observed in Fig. 3.3(c) where

we have plotted computer simulations of M(T) separately for the two sets of interacting
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Figure 3.3: Simulated M (arbitrary unit) vs. T curves during cooling (solid black) and

heating (dashed red) for the (a) interacting and (b) non-interacting cases: The curve (c)

shows the various contributions to the total magnetization of interacting sample(A) com-

ing from the (i) fast particles during the cooling cycle (black solid line), (ii) fast particles

during the heating cycle (red filled circle), (iii) slow particles during the cooling cycle

(magenta dashed line) and (iv) slow particles during the heating cycle (blue square). The

theoretical curves (a) - (c) have been calculated using a double delta function distribution

of particle sizes. Curve (d) shows a plot of the recovery parameter R (see text) as a

function of the width(s) of a Gaussian particle size distribution.

particles under the same cooling and heating regimens. Here we choose the temperature

T ∗ at which h is switched off such that the blocking temperatures [48, 49] corresponding

to the two different particle sizes flank T ∗. The simulations are based on rate theory

calculation for the time dependent magnetization given in the previous section. When h

is zero, both sets of particles relax to M=0. However, when h is turned on, particles 1

are blocked(M=0) while 2 show facile response. As T is increased again, M for particles

2 decreases with T while M for particles 1 initially increases before dropping off. The

resultant graph is a superposition (see Fig. 3.3 (c)) of a monotonically decreasing curve

and a hump, thus producing a wiggle. This effect is seen only when the temperature

of arrest is in-between the two respective blocking temperatures, in conformity with the

findings of [52]. We have performed measurements on the same system but now with

increased inter-particle separation ('15nm.) (see Fig. 3.2(b)), the simulation results of

which are shown in Fig. 3.3(b).

The resultant interaction effect due to dipole-dipole coupling, not considered in [52], is
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also quite distinct from the quenched-in disorder mediated interactions proposed in [51].

As described earlier, the effect of interaction, within a mean-field picture, is incorporated

by adding a term proportional to V 2 in the exponent of τ(V ) (cf. Eqs. (3.9) and (3.10)).

Thus, even small particles (V2) can now have τ2 larger than the measurement time. This

becomes more prominent at lower temperatures. Therefore, the blocking temperatures

for both particles 1 and 2 are now shifted to higher T, thereby causing the wiggles to

disappear. This is consistent with the results of Fig. 3.2 which show that the memory

effects are stronger for the non-interacting particles. We conclude then that the unex-

pected wiggles seen in the cooling and heating cycles of M(T) versus T have much less to

do with interaction effects but more to do with polydispersity of the sample.

How crucially does the nature of the particle size distribution function affect the magne-

tization recovery during the zero field heating cycle ? In order to answer this question we

first quantify the memory effect by defining a parameter,

R = Θ
(dM

dT

)

|T=Tn

dM

dT
, (3.19)

where Θ(x) is the Heaviside step function. The parameter R measures the positive slope

of the M(T) curve during zero field heating. We have calculated R using a Gaussian size

distribution centered at V = V0 and with width s. Our results for R are shown in Fig.

3.3(d) for a particular choice of V0 as a function of s. We observe that R increases with the

width of the distribution and saturates quickly. In this regime, R is almost independent of

V0 and accordingly, the detailed nature of the distribution. We conclude that the memory

effects will be best seen in samples with a dilute dispersion of particles but a very wide

(flat) distribution of sizes. Indeed in this limit the relaxation is known to be prominently

dominated by magnetic viscosity characterized by a logarithmic relaxation in time [51].

Not surprisingly, a logarithmic relaxation has been observed in the experiments of Sun et

al. although the interpretation offered is different from ours [51].

Our interpretation of the M vs. T data is further substantiated by our earlier reported

results (in Fig. 3.1) of hysteresis measurements and thereby coercivity estimation for

both the interacting sample A and non-interacting sample B. Clearly, for sample B the

relaxation times are shorter than the measurement time, at 300K. Thus, there is no

hysteresis loop and the coercivity (measured by the width along the abscissa on the zero-

magnetization line) is also zero. On the other hand, for sample A, we observe a non-zero
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coercivity even at 300K due to the slowing down of relaxation because of the presence of

an additional term proportional to V 2 in the exponent of τ(V ) as mentioned above.

Next we repeat the above measurements down to 4K, using a SQUID magnetometer. The
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Figure 3.4: Coercivity(hc) as a function of temperature for the interacting (2 red ) and

non-interacting (3 black) samples. The corresponding curves (hc in arbitrary unit) ob-

tained from our theory assuming a double delta function particle size distribution is shown

in the inset.

coercivity(hc) is plotted as a function of temperature(T), in Fig. 3.4. Because relaxation

slows down for both sample A and sample B, hc increases with decrease of T (Fig. 3.4).

The coercivity of the interacting sample A is larger than that of the non-interacting

sample B for temperatures greater than 25K. However, at T=25K a surprising crossover

is detected, where the coercivity for sample B shoots above that for sample A. We suggest

that the reason for this behavior is that the term H in the exponent of τ(V ) in Eq.(3.17)

is replaced by H+δH, where H is the applied field and the mean field δH arises from

interaction (cf. Eq. (3.10)):

δH = µV Λ tanh(
µV (h+ δH)

kBT
). (3.20)

The tanh term augments the V2 term in the exponent of τ(V ) below 25K, making the

larger particles relax so slowly that they don’t respond to H at all. Therefore, the larger

particles are ’frozen out’ from further consideration, making the mean relaxation time in
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the interacting case even smaller than that for the non-interacting case. This somewhat

nonintuitive conclusion is further confirmed by our simulated coercivity computation,

shown in Fig. 3.4 (inset).

3.4 Summary and Conclusions

We have presented here both theoretical and experimental results and their inter-

comparison. Our main focus has been to analyze how the relaxation and response behavior

of magnetic nanoparticles is influenced by their mutual interaction as well as polydispersity

of particle sizes. The theory presented in section 2.2 is based on the simplifying assumption

of large uniaxial anisotropy energy vis-a-vis the thermal energy. A further simplifying

assumption has been invoked in treating the interaction due to dipolar coupling between

magnetic nanoparticles within a mean field approximation. The symbiotic relationship of

polydispersity and interaction in influencing the relaxation phenomena has been brought

out through low-temperature magnetization and coercivity data. We have demonstrated

that just a bimodal distribution of particle size, in which one set of particles remains

frozen in its response behavior while the other set exhibits magnetic viscosity, suffices

to interpret dramatic memory effects seen in cooling and heating cycles of the magnetic

response. These memory effects are quite akin to and often interpreted to be due to much

complex spin glass phenomenon which is characterized by fascinating aging effects.

In conclusion, the strong history dependent effects seen in magnetization and coercivity

measurements in NiFe2O4 magnetic nanoparticles have been interpreted as being due to

arrested Neel relaxation. Our model has been simplified by choosing just two volumes of

the particles, on either side of the ‘blocking’ limit. Further corroboration of the proposed

mechanism has been achieved by performing measurements on an interacting system.

Our results suggest that either by tuning the interaction (through changing inter-particle

distance) or by tailoring the particle size distribution, these nanosized magnetic systems

can be put to important application in memory devices. In particular, a flat volume

distribution can be of great utility than a monodispersed distribution with a single sharp

peak.



Chapter 4

Memory in Nanomagnetic Systems:

Superparamagnetism Versus Spinglass Behavior

4.1 Introduction

As discussed in Chapter 3, though the subjects of both superparamagnetism and spin-

glasses are quite old and well studied [19, 21, 24, 25, 49, 59, 60], yet they have been

rejuvenated in recent years in the context of fascinating memory and aging properties of

nanomagnets. These properties, which are believed to be of great practical usages, have

been recently investigated in a large number of experiments on magnetic nanoparticles

[52,61-67], as reported earlier in the previous chapter. The observed slow dynamical be-

haviour has been variously interpreted, based on the paradigm of either superparamagnet

or spinglass, sometimes even obscuring the difference between the two distinct physical

phenomena. The purpose of this chapter is to reexamine some of the data, others’ as well

as our own, and critically assess the applicability of the physics of either superparamagnets

or spinglasses and occasionally, even a juxtaposition of the two. Our main point is, spin-

glasses are marked by Complexity, arising out of two separate attributes —– Frustration

and Disorder. While the manifested properties, such as stretched exponential relaxation

and concomitant aging effects, can also occur due to ‘freezing’ of superparamagnetism, es-

pecially in a polydisperse sample, the physics of spinglasses is naturally much richer than

that of superparamagnets. A discernible experimental signature of superparamagnetism

versus spinglass behavior seems to be the magnitude of the field-cooled (FC) magneti-

zation memory effect that is significantly larger for the interacting glassy systems than

the one in non-interacting superparamagnetic particles [68]. Therefore, invoking spinglass

40
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physics in interpreting data on the slow dynamics of nanomagnets can sometimes be like

‘killing a fly with a sledge hammer’, especially if a simpler interpretation on the basis of

superparamagnetism is available. We explore such situations in this chapter.

Superparamagnetism was discussed quite early by Frenkel and Dorfman and later by Kit-

tel, as a property arising out of single-domain behavior when a bulk ferromagnetic or

an antiferromagnetic specimen is reduced to a size below about 50 nm [19]. For such a

small particle-size the domination of surface to bulk interactions yields a mono-domain

particle inside which nearly 105 magnetic moments are coherently locked together in a

given direction, thus yielding a giant or a supermoment. Clearly, for this to happen, the

ambient temperature must be much less than the bulk ordering temperature, so that the

integrity of the super moment is maintained. However, as Neel pointed out, in the context

of magnetic properties of rocks in Geomagnetism, the direction of the supermoment is

not fixed in time [24]. Indeed, because of thermal fluctuations, this direction can undergo

rotational relaxations across an energy-barrier due to the anisotropy of the single-domain

particle, governed by the Neel relaxation time (Eq. (3.1)).

As mentioned in Chapter 3, the transition from superparamagnetism to frozen-moment

behavior occurs at a temperature, referred to in the literature as the blocking temperature

Tb, defined by

τE = τ0 exp
( KV

kBTb

)

. (4.1)

When the measurement temperature T is less than Tb the magnetic particles are blocked

whereas in the other extreme they display facile response to applied fields. Therefore, we

emphasize that even within a single particle picture, sans any form of inter-particle inter-

actions, such as in a dilute nanomagnetic specimen, one can obtain apparently intriguing

effects such as ‘stretched exponential’ relaxation simply because of size distributions. The

latter will be shown to be responsible for much of the data on slow relaxations in nano-

magnets.

Turning now to spinglasses, historically the phenomenon was first observed in dilute al-

loys such as Au1−xFex (or Cu1−xMnx) in which magnetic impurities Fe (or Mn) in very

low concentrations were “quenched-in” from a solid solution with a host metallic sys-

tem of Au (or Cu) [38]. The localized spin is coupled with the s-electron of the host

metal which itself interacts with the other conduction electrons via what is called the
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Ruderman-Kittel-Kasuya-Yoshida (RKKY) Hamiltonian, thereby setting up an indirect

exchange interaction between the localized moments. Because the coupling constant of

the exchange interaction, in view of the RKKY coupling, alternates in sign (between

ferro and antiferromagnetic bonds), the system is ‘frustrated’. Thus the ground state

is highly degenerate yielding a zero-temperature entropy. An additional effect is due to

disorder. Because the dilute magnetic moments are quenched-in at random sites, the ex-

change coupling-strengths are randomly distributed. The dual occurrence of frustration

and disorder has led to novel concepts in the Statistical Mechanics of spinglasses such

as configuration-averaging, replica-techniques (for computing the free energy), broken-

ergodicity, etc. [69]. Experimentally, spinglasses are characterized by a ‘cusp’ in the

susceptibility and stretched exponential relaxation of time-dependent correlation func-

tions [38]. It is no wonder then that spinglasses also exhibit slow dynamics with asso-

ciated memory and ageing effects, albeit the root causes are much more complex than

a system of polydisperse, noninteracting single-domain nanomagnetic particles, discussed

earlier. Indeed spinglasses, because of their complexity, have been employed as paradigms

for studying real structural glasses, an unresolved problem of modern condensed matter

physics [70].

Given this background on two distinct physical phenomena (and yet manifestly similar

properties) of superparamagnets and spinglasses, a natural question to ask is: can there

be spinglass-like physics emanating from a collection of single-domain nanomagnetic par-

ticles embedded in a non-metallic, non-magnetic host? The answer is clearly an YES

when the system is no longer a diluted one such that the supermoments start interact-

ing via dipole-dipole coupling. Because the dipolar interaction (like the RKKY-mediated

exchange interaction) is also endowed with competing ferro and antiferromagnetic bonds

[71], as well as randomness due to random locations of the magnetic particles, all the

attributes of spinglasses can be simulated in interacting single-domain particles. This will

be analyzed below.
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4.2 Superparamagnetic Slow Dynamics

Recently Sun et al have made a series of measurements on a permalloy (Ni81Fe19)

nanoparticle sample which demonstrate striking memory effects in the dc magnetization

[51]. These involve field-cooled (FC) and zero-field cooled (ZFC) relaxation measurements

under the influence of temperature and field changes. We have also observed very similar

memory effects in NiFe2O4 magnetic particles in a SiO2 host [62]. More recently Sasaki et

al [52] and Tsoi et al [63] have reported similar results for the noninteracting (or weakly

interacting) superparamagnetic system of γ − Fe2O3 nanoparticles and ferritin (Fe-N)

nanoparticles respectively. Further, to understand the mechanisms of the experimental

approach of Sun et al, Zheng et al [64] replicated the experiments on a dilute magnetic

fluid with Co particles and observed similar phenomena. In this section we present a

comparison of simulated results with all the above mentioned experimental observations

on the basis of a simple two-state noninteracting model plus a log-normal distribution of

particle size, developed earlier in Chakraverty et al [62].

We begin our discussion from the most basic and well known protocol, viz. the zero field-

cooled magnetization (ZFCM) and the field-cooled magnetization (FCM). The analysis is

based on the time-dependent magnetization, given by the formula :

M̄(t) =
∫

dV P (V )M(V, t), (4.2)

where P (V ) is a log-normal distribution of volume V :

P (V ) =
1

γV
√

2π
exp

[

− ln
V 2

2γ2

]

, (4.3)

with γ being a fitting parameter. The rate theory expression for M(V, t) is given in Eq.

(3.13). In the experimental procedure the external field has been taken to vary between

50 Oe to 100 Oe. The cooling or heating rate is about 2K/min. The temperature varies

between 300 K to 4 K. In all the simulations, the results of which are presented below,

we have used a log-normal distribution of particle sizes wherein the parameter γ is set to

0.5. The average anisotropy energy KV̄ is chosen as the unit of energy as well as that of

temperature by setting kB = 1 and V̄ = exp(γ2/2). The volume V is measured in units of

the average volume V̄ and the magnetic field in units of KV̄
µ

. The heating or cooling rate
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Figure 4.1: Numerically calculated dc magnetization for the FC and ZFC processes.

is set to r = 2.4 × 1012τ0 per temperature unit. Because τ0 for nanoparticles is around

10−9 sec and a typical experimental time window is about 10 sec, we have investigated

the predictions of our model in the time window 1010τ0. After doing the simulation we

re-express the temperature and time data in K and sec for the purpose of plotting.

In previous studies, Sasaki et al [52], Tsoi et al [63] and Zheng et al [64] have numerically

reproduced only the ZFC and FC relaxation measurements of Sun et al with temporary

cooling. But in this chapter we have successfully reproduced all other relaxation mea-

surements of Sun et al [51] based on our simple two state model. Figure 4.1 shows the

simulated FC-ZFC curves that match well with the experimental results of Sun et al [51]

(Fig. 4.1). The ZFCM has a peak at Tmax = 72K, which corresponds to the blocking

temperature Tb. The magnetization of the FC curve continues to increase with decreasing

temperature as would be expected for a system in thermal equilibrium. The two curves

depart from one another at a temperature higher than Tmax. Figure 4.2 shows the M-H

curve below and above the blocking temperature Tb, indicating hysteresis below Tb.

The most striking experimental observation of Sun et al is the memory effect in the dc

magnetization obtained from the following procedure. The sample is cooled in 50 Oe field

at a constant cooling rate of 2K/min from 200K (TH) to 10K (Tbase). After reaching Tbase,

the sample is heated continuously at the same rate to TH . The obtained M(T) curve

is the normal FC curve which is referred to as the reference curve. Then the sample is
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Figure 4.2: Numerically calculated M Versus H curve below and above Tb.

cooled again at the same rate, but the cooling is arrested three times (at T = 70, 50 and

30K) below Tb with a wait of tw = 4h at each stop. During tw, the applied field is also

turned off to let the magnetization decay. After each stop and wait period, the 50 Oe field

is reapplied and cooling is resumed. The cooling procedure produces a step like M(T)

curve. After reaching the base temperature, the sample is warmed continuously at the

same rate to TH in the continual presence of the 50 Oe field. Surprisingly, the M(T) curve

obtained in this way also shows the step like behavior. Similar memory effects, following

the same protocol were seen by us in NiFe2O4 sample in which the magnetic particles

were embedded in a host SiO2 matrix [62]. Although the effects were earlier explained

in terms of a bimodal distribution of particle size [62], a log normal distribution in the

simulation also indicates satisfactory agreement with experiments, as seen in Fig. 4.3.

In the Sun et al measurements [51] for magnetic relaxation with temporary cooling and

field change for the ZFC method the sample is cooled to T0 = 30K in zero field. Then

a 50 Oe field is applied and the magnetization is measured for a time t1. After t1, the

sample is quenched to temperature T = 22K in the absence of an external field and the

magnetization is recorded for a time t2. Finally the temperature is returned back to T0

and the field is turned on again. The magnetization is measured for a time t3.

In Fig. 4.4 we show our corresponding numerically simulated results. When a field of 50
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Figure 4.3: Numerically simulated memory effect observed in dc magnetization curves.

Oe is applied the magnetization immediately reaches a certain value, because the particles

with Tb ≤ 30K equilibrate rapidly. Then a slow logarithmic response begins which is due

to the energy distribution of the particles [74]. Now as the field is turned off, we observe

a sharp jump in M(t) due to those particles with Tb ≤ 22K which reach their equilibrium

state at T = 22K and hence do not contribute to the magnetization. However the parti-

cles with Tb > 30K are not in equilibrium and relax extremely slow at T = 22K, so we get

a constant curve during t2. Now as the field is turned on again and the temperature of the

sample is increased to T = 30K, the particles with Tb ≤ 30K and those flipped during

time t1 + t2 come back to the new equilibrium state which is same as that pertaining

before quenching. Therefore the relaxation in t3 is the continuation of that during the

time t1.

In the FC magnetic relaxation with temporary cooling and field change the sample is

cooled to T0 = 30K in a 50 Oe field and then the relaxation is measured for a time t1

after the field is cut-off. The field is turned on again and the sample is cooled to T = 22K

and the magnetization is recorded for a time t2. Finally the temperature is turned back

to T0 and the field is switched off again. The relaxation is now measured for a time t3.

We represent our numerical results for the same protocol in Fig. 4.5. When the field

is cut-off the particles with Tb ≤ 30K do not contribute to the magnetization . After t1,
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Figure 4.4: (a) Numerically simulated ZFC relaxation curves with temporary cooling and

field change; (b) the same data vs the total time spent at 30 K on a logarithmic scale.

when the sample is quenched to 22K and the field is turned on there is naturally a sudden

jump in the magnetization due to the particles with Tb ≤ 22K which have much higher

magnetization than the value just before quenching. As discussed earlier the particles

with Tb > 30K are not in equilibrium and their relaxation is very slow at T = 22K,

which explains an almost constant curve during t2. After t2, the field is turned off, and

the temperature is turned back to T0. Naturally, the magnetization jumps down, because

the particles with Tb ≤ 30K reach a new equilibrium state which has almost zero magne-

tization immediately following the field and temperature changes and the system returns

back to its state prevailing before quenching.

Finally, Sun et al have studied magnetic relaxation after a temporary heating (instead

of temporary cooling) from 30K to 38K which do not exhibit any memory effect. After

temporary heating, when temperature returns back to T0, the system does not come back

to its previous state before heating. Sun et al suggested that this asymmetric response

with respect to negative/positive temperature cycling is consistent with a hierarchical

model of the spin-glass phase. However, we have numerically reproduced the same results

as that of Sun et al based on our two-state independent particle model, as shown in Fig.

4.6. No memory effect appears after positive heating which can be explained as follows.

In the FC method the sample is cooled to T0 = 30K in the presence of a 50 Oe field and
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Figure 4.5: (a) Numerically simulated FC relaxation curves with temporary cooling and

field change; (b) the same data vs the total time spent at 30 K on a logarithmic scale.

then the field is cut-off and the relaxation is measured for a time t1. So the magnetization

decreases with time for a time t1. Now as the temperature is increased all the particles

with Tb ≤ 38K respond to this temperature change and relax to the new equilibrium

state. Since thermal agitation increases with the increase of temperature, the magneti-

zation decreases further for the time t2. As the temperature returns back to T = 30K,

the particles with Tb > 30K are unable to respond to this temperature change. Thus the

particles with Tb ≤ 30K actually follow the path during time t2 rather than t1. Because

all the particles which had flipped during the time t1 + t2 cannot return back to their

previous state as that before heating, no memory effect is observed.

In the ZFC method the sample is cooled to T0 in the absence of an external field and

then a 50 Oe field is turned on and relaxation is measured for a time t1, yielding a finite

magnetization, for particles with Tb ≤ 30K. Then a slow logarithmic relaxation begins

which is due to the energy distribution of the particles. As the sample is further heated

to T = 38K, all the particles with Tb = 38K respond to this temperature change. Thus

the logarithmic relaxation is continued but there is a jump in magnetization, because the

particles with Tb ≤ 38K and those flipped during t1 reach a new equilibrium state. As the

temperature of the sample is returned back to T = 30K thermal agitation is reduced, so

there is a jump in magnetization. But now only the particles with Tb > 30K are allowed
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Figure 4.6: Numerically simulated FC and ZFC relaxation curves with temporary heating.

to relax and their relaxation is very slow at T = 30K, so we obtain an almost flat curve.

We conclude this section by underscoring that our simulations based on the simple two-

state noninteracting model reproduce all the features of the memory effects observed by

Sun et al in the Permalloy (Ni81Fe19). Secondly, positive heating does not yield memory

effect whereas temporary cooling does. So there is an asymmetric response with respect

to negative/positive temperature cycling. This asymmetry is due to the fact that after

temporary cooling only smaller nanoparticles are able to respond to the temperature or

field change and relax to the new equilibrium state. The larger nanoparticles are frozen.

Upon returning to the initial temperature or field value, the smaller particles rapidly

respond to the change such that this new state is essentially the same as that before

the temporary cooling, and the larger nanoparticles are now able to resume relaxing to

the equilibrium state. This results in a continuation of the magnetic relaxation after the

temporary temperature or field change. In contrast, for positive heating, all the particles,

smaller as well as bigger, are able to respond to the temperature or field change. There-

fore, after returning to the initial temperature, the bigger particles do not respond at all

whereas the smaller particles take time to respond, thus leading to no memory effect in
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the positive heating cycle.

4.3 Spinglass Like Slow Dynamics

Time-dependent magnetization measurements suggest that dense nanoparticle samples

may exhibit glassy dynamics due to dipolar inter-particle interaction [68,75-77]; disorder

and frustration are induced by the randomness in the particle positions and anisotropy

axis distributions. As discussed within a simple mean field theory picture, adapted to

the two-state model of Chakraverty et al [62], the random dipolar interaction can be ac-

counted for in terms of a local, self-consistent field that has the form, given earlier in Eq.

(3.10). As Eq. (3.10) admits both positive and negative solutions for H, corresponding to

ferro and antiferro-magnetic bonds, frustration is automatically incorporated within the

simplified two-state picture. The rate constant in Eq. (3.17) is thus modified replacing

H by h+H, where h is the applied external field and H is the mean dipolar field.

The ZFC and FC behavior (for the magnetization) for the dense magnetic nanoparticle
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Figure 4.7: (a) Numerically simulated results for the double memory experiment (DME)

for the FC method; (b) the FCM and ZFCM vs. temperature of the interacting system

are shown.

system, as measured by Sasaki et al [52], is numerically simulated by us and are shown

in Fig. 4.7. We observe a peak in the ZFCM which corresponds to an average blocking

temperature < Tb >. In the superparamagnetic case the ZFC-FC curves bifurcate at a
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temperature away from the peak position of the ZFCM (see Fig. 4.1). On the other hand,

for the dense system the ZFCM-FCM curves bifurcate at a temperature very close to the

peak position of the ZFCM. The FCM of the dense system does not increase but stays

almost constant below < Tb > which is the primary indicator for the glassy state [52].

In order to have a better understanding of glassy relaxation, time-dependent magne-
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Figure 4.8: Numerically simulated results for the double memory experiment (DME) for

the ZFC method in an interacting system (green circle) and in a non-interacting system

(blue square).

tization studies under various heating and cooling protocols were performed by Sasaki

et al [52] on dense Fe-N nanoparticle systems, by Raj Sankar et al [66] on LaMnO3.13,

by Kundu et al on La0.7Ca0.3CoO3 [67] and by Telem-Shafir and Markovich on MICS76

sample [68]. In a double memory experiment (DME) under FC protocol the system is

cooled under a field of 50 Oe. The field is cut-off during the intermittent stops of the

cooling at T = 30K and at T = 40K for 3000 sec at each stop. After reaching the lowest

temperature the magnetization measurement is repeated in the heating mode without

any intermittent stop. In Fig. 4.7(a) we have shown our numerically simulated results of

DME based on our interacting nanoparticle model, which have a striking resemblance to

the experimental results.

Another protocol has been suggested by Sasaki et al to confirm whether the observed
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memory effect is due to glassy behavior or not. In this, the sample is first rapidly cooled

in zero field from a reference temperature (Tref) to the stop temperature (Ts), where it is

kept for 9000 sec. The cooling is then resumed down to the lowest temperature where a

magnetic field is applied and the susceptibility is recorded on reheating the sample. The

conventional ZFC susceptibility is also recorded. The difference between the aged and

the normal ZFC susceptibility as a function of temperature was measured by Sasaki et

al [52]. Figure 4.8 is our numerically simulated results, which are again very similar to

that of the experiment. In the fitting procedure Eq. (3.10) has been numerically solved

by choosing Λ randomly between 0 and 1, fixing h to 0.5, as before.

4.4 Superparamagnetism versus spinglass

From the above analysis it is evident that the slow dynamics in nanoparticle systems

can be classified into two kinds. The first one is due to the broad distribution of relax-

ation times originating solely from the anisotropy energy barriers. In this non-interacting

case the magnetic moment of each particle relaxes according to its individual energy bar-

rier, that depends on the magnetic anisotropy, which in turn depends on the volume of

the nanoparticle. Therefore, a distribution of particle volumes results in a distribution

of energy barriers and blocking temperatures. In the second kind of slow dynamics in

dense magnetic nanoparticle systems, cooperative spin-glass like dynamics, accompanied

by frustration caused by the strong dipolar interactions among the particles, are the un-

derlying reasons for memory effects. Here no unique ground state exists but rather many

configurations are equally probable. The local energy barriers between these configura-

tions are low, enabling a constant development towards equilibrium, but resulting in the

inability to reach it.

Which kind of slow dynamics amongst the two scenarios, presented above, is relevant

depends essentially on the concentration of the nanoparticles, at least for the data shown

here. One indicator of the difference in the two kinds of slow dynamics of non-interacting

and interacting nanoparticles is revealed by the field cooled (FC) magnetization mea-

surements. As discussed earlier in Chapter 3, the extent of the memory effect can be
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quantified by a parameter (R) (cf. Eq. (3.19)):

R = Θ
(dM

dT

)

T=Tn

dM

dT
, (4.4)

where, Θ(x) is the Heaviside step function and Tn is the temperature at which field is

switched off. This parameter measures the positive slope of the M(T) curve during zero

field heating. We have calculated R for the non-interacting and interacting cases from the

figures (4.3) and (4.7-(a)) respectively. The value of R in the dense system is about eight

times larger than that in the non-interacting case, implying that the magnitude of the FC

magnetization memory effect does depend on the inter-particle dipolar interaction. This

is in quite good agreement with the experimental results of Telem-Shafir et al [68].

In the non-interacting case, no memory effect is seen during a ZFC process (see Fig. 4.8)

below (Tb), since the occupation probabilities of up and down particles are both equal to

0.5 (two-state model). So this system does not show any difference between the magneti-

zation curves with and without intermittent stops during the cooling process. But in the

interacting case there exist a huge number of states, because the local mean dipolar field is

a random variable. The system goes into deeper and deeper valleys with higher and higher

energy barriers as time progresses. Therefore, the energy barrier of the state in which the

system is blocked depends on the ageing time of the system, when temperature is low,

and the consequent higher energy barrier makes the system more reluctant to respond to

an applied field. Thus the difference in the energy barrier with and without intermittent

stops on cooling causes the dip in Fig. 4.8. Further the memory effect observed in the

ZFC method in the interacting case can be observed over a temperature range, albeit

narrow, below Tb. It can therefore be said that although no true superparamagnetic to

spinglass phase transition occurs in the strongly interacting case, a sharp transition from

a superparamagnetic state towards local domains of stable magnetic moments, does occur

very close to Tb.

The third significant difference between “superspin” and “superparamagnet” is in the

behavior of the FCM. The latter for the superparamagnet increases with the decrease

of temperature whereas it not only does not increase but can even decrease as the tem-

perature is lowered for the interacting sample (see Figs. 4.1 and 4.7). The individual

blocking model reproduces a monotonous increase in FCM for “superparamagnets”. The

field-cooled magnetization increases with decreasing temperature until all particles are
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blocked. Such features reflect a distribution of Tb, i.e., distribution of particle volumes.

On the other hand the temperature independence of the FCM for the “superspins” can

not be explained by the individual particle model and is a clear indication of progressive

freezing of particle moments which behave in a collective manner.

4.5 Conclusions

In conclusion, similarities as well as distinct differences in the slow dynamics of isolated

nanoparticles and of strongly interacting nanoparticles are discussed. Our interacting

and non-interacting models are good enough to capture all these signatures. From the

comparative study, it is well understood that the similarities are observed in the memory

effect following the temperature and field protocol of Sun et al. On the other hand the

differences are seen in the FC memory effect, ZFC memory effect and in the FCM.



Chapter 5

Coercivity of Magnetic Nanoparticles: A Stochastic

Model.

5.1 Introduction

Coercivity of nanomagnetic systems is an important quantity which plays a crucial role

as far as the stabilization of a magnetic system is concerned [78, 79]. Modern magnetic

recording technologies involve particles that are near the superparamagnetic limit. In this

limit, the energy barrier separating the two energetically degenerate magnetic orientations

is small enough that thermal fluctuations naturally lead to spontaneous switching of the

orientation. The random magnetization reversals in particles below the superparamag-

netic limit degrade recorded information. Thus the main challenge is to keep the energy

barrier in the individual particles high enough to make spontaneous switching infrequent

and the material is kept magnetically soft enough to facilitate recording. Materials with

higher coercivities due to strong magnetocrystalline anisotropies are employed in recording

media. Therefore it is essential to understand the size dependent behaviour of coercivity

of magnetic fine particles [80].

Various theoretical models have been published on the particle size dependence of coerciv-

ity [81, 82]. Thermal switching in single-domain particles was considered by many people

[25, 72, 83-85]. The effect of constant magnetic field in Neel relaxation of single-domain

regime was discussed by Coffey et al [86, 87]. Nucleation of domain walls was investigated

by Braun [88, 89]. The crossover from single to multi-domain switching was investigated

numerically by Hinzke et al [90]. But these models failed to explain the decrease in Hc

with the increase in particle size. Also the effect of measurement time which is the time

55
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lag between the measurement and the application of field was not included in the above

mentioned theoretical models.

In this chapter we have explained the non-monotonic behavior i.e. first increase and

C Luna et al

Figure 3. Schematic representation of a Co80Ni20 particle obtained
by the polyol process with diameter smaller than 18 nm. For
powders with particle size larger than 18 nm, each particle is a
polycrystal.

grain size) studied in the present work seem to be constituted

by single crystals, while for powders with larger particle size

each particle must be a polycrystal.

A core–shell structure of the composition distribution can

be proposed for these particles (see figure 3), as has been shown

for other metal particles [10, 16]. First of all, impurities such

as carbon, oxygen and hydrogen are expected to form a surface

layer that prevents oxidation of the particles in air. Secondly,

the core of the particle is principally metallic, formed by cobalt

and nickel with an atom ratio equal to four and a noble metal

nucleus (Ag or Pt).

It is worth noting that a small concentration gradient in

the distribution of the cobalt and nickel has been previously

found [8], the concentration of nickel being slightly lower in

the interior than in the outer layers.

3.2. Magnetic properties

3.2.1. Saturation magnetization. The saturation magnetiza-

tion, Ms , decreases from 130 to 55 emu g−1 at 300 K as the

particle size decreases in an inverse linear relationship (fig-

ure 4). This linear decrease, also exhibited at lower tempera-

tures, indicates that the reduction of Ms is associated with the

increment of the surface to volume ratio, resulting in a higher

contribution from the surface.

The extrapolation of the linear fit of these data versus

the inverse of the average particle diameter gives a saturation

magnetization value of 135 ± 3 emu g−1 for the bulk, that

is close to the reported value for Co80Ni20 alloy (about

141 emu g−1) [21], and it is consistent with the core–shell

model [16]. As the particle size decreases, the contribution

from the surface is more important giving rise to a decrease in

the saturation magnetization. It should be noted that the co-

existence of two crystalline phases is not expected to affect the

Ms value since the magnetic moment of the two phases differs

by only 2% [18].

For ferromagnetic metal nanoparticles, pure finite size

effects are expected to enhance the Ms value with respect to the

bulk, in contrast to ferrimagnetic oxides. Thus, metal atoms

at the surface present a higher magnetic moment due to the

band narrowing caused by the lack of orbital overlap [18, 19].

However, the negative contribution of the surface is clear in

these Co80Ni20 samples even at low temperature leading to a

noticeable reduction of the magnetization for particles with a

diameter smaller than 30 nm which should be ascribed to the
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Figure 4. Dependence of saturation magnetization on median
particle diameter at 10 and 300 K (solid curves are just guides to the
eye). The inset shows the Ms values versus the inverse of the
median diameter at 300 K (the solid line shows the linear fit).
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relative increase of the contribution from impurities and oxides

at the surface layer.

3.2.2. Coercive field. The evolution of the coercivity, Hc,

with the particle size at 10 and 300 K is shown in figure 5. The

coercive field varies by more than one order of magnitude, from

10 to 440 Oe at room temperature and from 36 to 1260 Oe at

10 K.

At room temperature, a maximum coercivity is observed

at a critical diameter, dC , so that two size ranges can be

distinguished. Above a critical value, dC , of around 40 nm

the coercivity decreases as particle size increases, with an

inverse linear relationship (see the inset in figure 5), whereas

for the finest particles with sizes below dC the coercive field

decreases as the particle diameter decreases. This variation of

the Hc values clearly indicates two different mechanisms of

270

Figure 5.1: Dependence of coercive field on the particle size of Co80Ni20 at two different

temperatures (solid curves are just a guide to the eye). The inset shows the linear de-

pendence of the coercive field on the inverse of the average particle size. C. Luna et al,

Nanotechnology 14, 268 (2003).

then decrease in coercivity with the increase of particle size at room temperature with

the help of non-equilibrium statistical mechanics (see Figure 5.1)[91]. Also we have elu-

cidated the monotonous decrease of coercivity with the increase of particle size at very

low temperature (10K) within the framework of our two state model (see Figure 5.1).

We have added to the model the influence of anisotropy and have used supersymmetry

quantum mechanics (SUSY QM), a novel application to a problem in magnetism. Thus,

our model puts the phenomena on a more mathematical as well as a quantitative basis,

including the effect of measurement time and anisotropic potential. We have assumed

that our system is noninteracting and mono-dispersed. The particle size distribution and

inter-particle interaction can produce further interesting effects [51, 52, 62, 92], but are

not considered here.

In the next section, we have discussed the increasing part of coercive force at room temper-

ature for single-domain particles, assuming the validity of the high barrier and weak noise
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limit. Also we have discussed the decrease of the coercive force at low temperature (10K).

We have justified our model by comparing our numerical results with experimental data.

The variation of other magnetic properties, in particular saturation magnetization Ms

and the ratio of the remanence to saturation magnetization Mr

Ms
values are also discussed

in detail in this section. The effect of magnetocrystalline anisotropy on the equilibrium

magnetization is illustrated is section 5.3. In section 5.4 we discuss the decreasing part

of the coercivity by invoking SUSY method for the multi domain nanoparticles. Finally

we summarize and conclude in section 5.5.

5.2 Single-domain Regime and Size Dependent Magnetic Prop-

erties

A basic assumption in small-particle magnetism is that a single-domain particle, with a

given physical orientation, is in thermal equilibrium at a temperature T. Its constituent

spins rotate in unison, so the only relevant degree of freedom is the orientation of the net

magnetic moment. We consider systems where the magnetic-anisotropy energy has an

axial symmetry. Now in an external field ~B, the total magnetic energy is

V (~m) = −KV
m2

(~m · n̂)2 − ~m. ~B, (5.1)

where K is the magnetic-anisotropy energy constant, V is the volume of the nanoparticle,

and n̂ is a unit vector along the anisotropy axis. Introducing the unit vectors ê = ~m
m

and

b̂ =
~B
B

, as well as the dimensionless anisotropy and field parameters σ = KV
kBT

, ξ = mB
kBT

,

we can express the potential energy (5.1) as

−βV = σ(ê.n̂)2 + ξ(ê.b̂), (5.2)

where β = 1
kBT

and kB is the Boltzmann constant. It is customary to choose the anisotropy

axis n̂ as the polar axis of a spherical coordinate system. Then, if (θ, φ) and (λ, 0) denote

the angular coordinates of ~m and ~B respectively as shown in figure (5.2), the magnetic

energy can be written as

−βV (θ, φ) = σ cos2 θ + ξ‖ cos θ + ξ⊥ sin θ cosφ, (5.3)
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Figure 5.2: Coordinate system used for our calculation in the Section 5.2.

where ξ‖ = ξ cosλ and ξ⊥ = ξ sin λ. The potential energy (5.3) is plotted in figure (5.3)

for different orientation of λ.

The first phenomenological equation of motion describing the average behavior of the

magnetization vector ~m was put forward by Landau and Lifshitz [93] which is given by

~̇m = γ ~m× ~Heff , (5.4)

where γ is the gyromagnetic ratio and ~Heff is an effective magnetic field given by

~Heff = − 1

Ms

∂V (θ, φ)

∂ ~m
, (5.5)

where Ms is the spontaneous magnetization. Gilbert [94] then proposed an effective

damping term yielding

~̇m =
b

a
Ms ~m× ~Heff + bMs(~m× ~Heff) × ~m, (5.6)

where b = γa
(1+a2)Ms

, a = ηγMs and η is a phenomenological damping constant. From Eq.

(5.6) Brown [25] derived the Fokker-Planck equation for the distribution of magnetization

vector, following the work of Wang and Uhlenbeck [8]. Brown’s treatment is based on

the assumption that the individual magnetization vector in a system of single-domain

magnetic particles is like a density that is connected to a current of representative points

moving around the surface of a unit sphere having a number density W(~m,t) and current
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λ. The angle φ is fixed at zero.

density ~J(~m, t). Since such representative points can neither be created nor destroyed, W

and ~J satisfy the continuity equation

Ẇ = − ∂ ~J

∂ ~m
. (5.7)

The representative points that are concentrated around the minima are dispersed by the

influence of the random thermal agitation. This can be represented by the inclusion of

a diffusion term of the form −κ∂W
∂ ~m

, where κ is a constant at a given temperature. Thus

the current density ~J is given by

~J = W ~̇m− κ
∂W

∂~m

= − b

a
W ~m× ∂V

∂ ~m
− bW

∂V

∂ ~m
− κ

∂W

∂~m
(5.8)

Now following Brown’s treatment [25] we obtain the following Fokker-Planck equation in

spherical polar co-ordinates:

Ẇ = β−1b∇2W + bW∇2V + b
(∂V

∂θ

∂W

∂θ
+

1

sin2 θ

∂V

∂φ

∂W

∂φ

)

+
b

a sin θ

(∂V

∂θ

∂W

∂φ
− ∂V

∂φ

∂W

∂θ

)

. (5.9)
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In the intermediate-to-high-damping (IHD) approximation of Brown, the potential V may

be taken approximately close to the ith stationary point by a Taylor series [95] truncated

at the second-order terms so that

V (~m) = Vi +
1

2
C

(i)
1 〈~m.e(i)

1 〉2 +
1

2
C

(i)
2 〈~m.e(i)

2 〉2, (5.10)

where the co-ordinate systems {e(i)
k }k=1,2,3 are oriented so that e

(i)
3 points in the direction

of the stationary point. The condition for stationarity for the potential (5.3) is

sin θ cos θ + h cosλ sin θ − h sinλ cos θ cos φ = 0, (5.11)

where h = ξ
2σ

. On introducing u = h cosλ, r = h sinλ and x = cos θ, we obtain

(x+ u)
√

1 − x2 ± rx = 0, (5.12)

where the negative sign corresponds to the stationary points that occur for φ = 0 while

the positive sign represents the local maximum that occurs for φ = π. Thus we obtain

Vi = β−1σ
(

1 − x2
i − 2uxi − 2r

√

1 − x2
i

)

, (5.13)

C
(i)
1 = 2β−1σ

(

x2
i + uxi + r

√

1 − x2
i

)

, (5.14)

C
(i)
2 = 2β−1σ

(

− 1 + 2x2
i + uxi + r

√

1 − x2
i

)

, (5.15)

where −1 ≤ x2 ≤ x0 ≤ x′0 ≤ x1 ≤ 1 are the roots of the equation

(x+ u)2(1 − x2) = r2x2 (5.16)

which is obtained by squaring equation (5.12). Let us assume that the ratio of barrier

height to thermal energy is appreciable i.e. (β(V0 −Vi) ≥ 1), so that we may say that the

density of magnetic moment orientation W, if replaced by ni (the number of particles in

the ith orientation), rapidly achieves a state of quasiequilibrium [25]. Thus the Fokker-

Planck equation (5.9) reduces to the rate equations :

ṅ1 = −ṅ2 = ν2,1n2 − ν1,2n1, (5.17)
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where νi,j is the transition probability from orientation i to orientation j, and n1 and n2 are

the number of particles with a positive orientation and negative orientation respectively.

The transition probabilities are given by

ν1,2 = τ−1
1 = b

√

C
(1)
1 C

(1)
2 e−β(V0−V1)

−(C
(0)
1 + C

(0)
2 ) +

√

(C
(0)
2 − C

(0)
1 )2 − 4C

(0)
1 C0

2

a2

4π
√

−C(0)
1 C

(0)
2

(5.18)

and

ν2,1 = τ−1
2 = b

√

C
(2)
1 C

(2)
2 e−β(V0−V1)

−(C
(0)
1 + C

(0)
2 ) +

√

(C
(0)
2 − C

(0)
1 )2 − 4C

(0)
1 C0

2

a2

4π
√

−C(0)
1 C

(0)
2

(5.19)

The solution of equation (5.17) is

n2(t) =
nτ2 − e

−( 1
τ1

+ 1
τ2

)t
(nτ2 − n2(τ2 + τ1))

τ1 + τ2
, (5.20)

where n = (n1+n2). We know (n1−n2) is proportional to the net magnetization along the

direction of the applied magnetic field. For a single domain particle with large relaxation

time, if one changes the magnetic field after a finite interval of time (t), then

lim
δH→0−

nH−δH
2 (t) = nH→

2 (0) 6= lim
δH→0+

nH+δH
2 (t) = nH←

2 (0). (5.21)

This implies that for a particular value of H one should not expect to get the same

value of magnetization during increasing and decreasing cycle of H. Since the relaxation

time τi increases with particle volume, (MH← −MH→) also increases with particle vol-

ume giving rise to higher coercivity. Hence coercivity is a consequence of the quasi-static

non-equilibrium measurement. Therefore, Langevin theory of paramagnetism is not ap-

plicable in these cases. We use equation (5.20) to generate M versus H curve as shown in

Fig. (5.4), for particle sizes 7 nm and 18.5 nm., t = 120 sec and K=106 erg/cc which is

realistic for measurements of coercivity by a vibrating sample magnetometer.

In the superparamagnetic limit the energy barrier separating the two energetically de-

generate magnetic orientations is very small. Thus thermal fluctuations frequently lead to

spontaneous switching of the orientation. In the Fig. (5.5) we have compared our numer-

ically simulated data obtained from the two-state model with that of the experimental

data obtained from the W. H. Meiklejohn [96] and F. E. Luborsky [97]. The agreement
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Figure 5.4: Simulated M versus H curve for two particle sizes (a) 7 nm and (b)18.5 nm

respectively.
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Figure 5.5: Dependence of coercive force on the particle diameter for the Co80Ni20
nanoparticles at room temperature (300K) for the single domain regime. Red filled dot

denotes the experimental data (C. Luna et al [78]) and the blue filled square denotes the

simulation data obtained from our model.

of the numerical data with that of experimental data is excellent. At very low tempera-

tures thermal effects are negligible and a different size-dependence of the coercivity force

is observed. The size dependence of coercivity at 10K monotonically decreases with in-
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Figure 5.6: Dependence of coercive force on the particle diameter for the Co80Ni20
nanoparticles at 10K. Red filled dot denotes the experimental data (C. Luna et al [78])

and the blue filled square denotes the simulation data obtained from our model.

creasing size over the whole range of sizes. This is shown in figure (5.6). At 10K the

thermal energy is small in comparison to the anisotropy energy barrier, given by KeffV ,

where V is the particle volume and the effective anisotropy constant takes the following

phenomenological expression Keff = KV + 6
d
Ks, where KV and Ks are the volume and

surface anisotropy energy constants respectively. Thus the particles behave as if they

are more anisotropic and the surface region is magnetically harder than the core region

due to the anisotropy induced by the surface layer. This anisotropy which increases with

the decrease of particle size has crystal field nature and is coming from the symmetry

breaking at the boundaries of the particles.

The particle size dependence of Ms is shown in Fig. (5.7). The saturation magnetiza-

tion, Ms, decreases from 130 to 55 emu g−1 at 300K as the particle size decreases. The

decrease in coercivity follows an inverse linear relationship with the particle size. This

linear relationship is also observed at low temperature (10K). Thus we can conclude that

this reduction in Ms is totally related with the surface to volume ratio. As the ratio

increases the surface contribution increases and ultimately resulting in a high saturation

magnetization.

The variation of the remanence to saturation magnetization ratio, Mr

Ms
, at 10K as a

function of the particle size is shown in Fig. (5.8). This variation is somewhat similar to

that of the coercivity. At very low temperature (10K) the smallest particles have an Mr

Ms
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Figure 5.7: Dependence of saturation magnetization (Ms) on the particle diameter for the

Co80Ni20 nanoparticles at (a) 10K and (b) 300K. Red filled dot denotes the experimental

data (C. Luna et al [78]) and the blue filled square denotes the simulation data obtained

from our model.
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Figure 5.8: Dependence of the ratio of remanence to saturation magnetization (Mr

Ms
) on the

particle diameter for the Co80Ni20 nanoparticles at 10K and 300K. Red filled dot solid

line denotes the experimental data (C. Luna et al [78]) and the blue filled square solid

line denotes the simulation data obtained from our model at 10K. Black filled upward

triangles dashed line denote the experimental data (C. Luna et al [78]) and green filled

downward triangles dashed line denote the simulation data obtained from our model at

300K.

value close to 0.5 which is the value of Mr

Ms
for a random distribution of non-interacting

uniaxial particles. The other particles have much smaller value of Mr

Ms
. On the other hand
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this ratio is much smaller for the smallest particles at room temperature. This is due to

thermal agitation which frequently leads to spontaneous switching of the orientation.

In simulating all the above mentioned graphs we always use the two state model

i.e. the high barrier and weak noise limit (equation 5.17), and the following parameters.

The anisotropy energy is measured in units of thermal energy (kBT ). Experimentally

K ∼ 106 erg/c.c and we use V = 4
3
πr3. Now the ratio α = KV

kBT
is chosen in such a way

that KV varies between 0.5kBT to 10kBT . The relaxation dynamics is mainly governed

by τ1,2 = τ0 exp
(

KV±Msh
kBT

)

. We know τ0 ∼ 10−10 sec. Typically we have focused in the

time window of 1011τ0 which is equivalent to experimental measurement time of DC mag-

netization. We use hMs ∼ 0.2kBT for our simulation. Here we are dealing with about

1000 (n) particles.

In this section we have shown that the non-equilibrium state governs the magnetic hys-

teresis of nano-magnetic systems. The variation of coercivity at room temperature as well

as at 10K as a function of particle size has also been explained in this section. We have

also studied the effect of surface anisotropy on the magnetic properties of our nanomag-

netic system.

5.3 Effect of Anisotropic Potential

In the case of a superparamagnetic system, a common practice is to fit the magnetization

curve by using the Langevin theory of paramagnetism [98]. But the Langevin theory of

paramagnetism does not include magnetocrystalline anisotropy energy, and hence it is

necessary to obtain deeper insight into the statistical properties of non-interacting mag-

netically anisotropic nanoparticles in the framework of classical physics. We derive the

first few terms in the expansion of partition function Z in powers of σ = KV
kBT

. This expan-

sion will provide a suitable description of the magnetization when the anisotropy energy

is small in comparison to the thermal energy. Now the magnetic energy corresponding to

figure (5.9) is given by

−βV (θ, φ, λ) = σ
(

sin θ sinλ cosφ+ cos θ cosλ
)2

+ ξ cos θ. (5.22)

With this choice of co-ordinate and magnetic energy, the partition function becomes
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Figure 5.9: Coordinate system used for our calculation in the Section 5.3.

Z =
1

2π

∫ π

0
dθ sin θ exp(ξ cos θ)

∫ 2π

0
dφ exp[σ(sin θ sinλ cosφ+ cos θ cosλ)2]. (5.23)

5.3.1 Weak Anisotropy

We expand the second exponential of equation (5.23) to obtain

Z =
∞
∑

0

σi

i!
zi, (5.24)

where

zi =
1

2π

∫ π

0
dθ sin θ exp(ξ cos θ)

∫ 2π

0
dφ(cosλ cos θ + sinλ cos θ cos φ)2i (5.25)

Let us rewrite equation (5.24) in powers of σ as

Z = Z0

(

1 +
Z1

Z0
σ +

Z2

2Z0
σ2 + .....). (5.26)

Thus

lnZ ' lnZ0 +
Z1

Z0
σ +

1

2

[Z2

Z0
−

(Z1

Z0

)2]

σ2, (5.27)

where

Z0 =
2

ξ
sinh ξ (5.28)

Z1

Z0

=
(

1 − 2

ξ
L(ξ)

)

cos2 λ+
1

ξ
L(ξ) sin2 λ (5.29)
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1

2

[Z2

Z0
−

(Z1

Z0

)2]

=
2

ξ2

{

[2(1 − 3

ξ
L) − L2] cos4 λ− [6(1 − 3

ξ
L) − L2 − ξL] cos2 λ sin2 λ

+
1

4
[3(1 − 3

ξ
L) − L2] sin4 λ

}

(5.30)

and

L(ξ) = coth ξ − 1

ξ
. (5.31)

From the relation

MB = m
∂

∂ξ
(lnZ), (5.32)

we obtain
MB

m
' L(ξ) +

d

dξ

(Z1

Z0

)

σ +
1

2

d

dξ

[Z2

Z0
−

(Z1

Z0

)2]

σ2. (5.33)

Taking derivatives of equations (5.29) and (5.30) with respect to ξ, we obtain magneti-

zation for some relevant particular cases. First we consider the case when the external

applied field direction is parallel to the anisotropy axis

MB,‖
m

' L(ξ) +
2

ξ

[

L2 − (1 − 3

ξ
)L

]

σ +
4

ξ3

[

3L2 − 5(1 − 3

ξ
L)

+ξL[L2 − (1 − 3

ξ
L)]

]

σ2. (5.34)

For the perpendicular case

MB,⊥
m

' L(ξ) − 1

ξ

[

L2 − (1 − 3

ξ
L)

]

σ +
3

2ξ3

[

3L2 − 5(1 − 3

ξ
L)

+ξL[L2 − (1 − 3

ξ
L)]

]

σ2. (5.35)

When anisotropy axes are distributed at random,

〈MB〉ran

m
' L(ξ) − 4

15
(1 − 3

ξ
L)

1

ξ
[L2 − (1 − 3

ξ
L)]σ2. (5.36)

From Fig. 5.10(a) it is evident that for the longitudinal field case, anisotropy favors

the alignment of magnetic moment along the field direction, whereas in the transverse

field case the anisotropy hinders the magnetic moment to align in the field direction.

The anisotropy contribution
(

MB(ξ) −mL(ξ)
)

has been shown in figure 5.10(b). From

this figure it is evident that the random orientation of the anisotropy axes significantly

reduces the anisotropy induced contribution to the magnetization process. In the low
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Figure 5.10: (a) Variation of magnetization with longitudinal field ξ = mB
kBT

for different

cases with easy axis anisotropy (b) Variation of anisotropy-induced contribution with

longitudinal field for the same.

field regime, this cancellation is exact. For the easy-plane anisotropy case (σ < 0), the

longitudinal and transverse field interchange their roles. In this case, when ~B ‖ n̂, the

anisotropy hinders the magnetization process, whereas when ~B⊥n̂, anisotropy favors it

and for the anisotropy axes distributed at random, the randomness again reduces the

anisotropy induced contribution as shown in figure 5.11(a). In figure 5.11(b) we have

shown the anisotropy induced contribution for the easy-plane case (σ < 0).

5.3.2 Strong Anisotropy

In order to complement the weak-anisotropy expansion, we now discuss the asymptotic

expansion of the partition function for strong anisotropy. The desired expansion is given

by

Z ' eσ

σ
cosh ξ‖

{

1 +
1

4σ
[(2 + ξ2

⊥) − 2ξ‖ tanh ξ‖
]

+
1

4σ2
[(3 + ξ2

‖

+ξ2
⊥ +

1

8
ξ4
⊥) − (3 + ξ2

⊥)ξ‖ tanh ξ‖] + ....
}

, (5.37)

from which,
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Figure 5.11: (a) Variation of magnetization with longitudinal field ξ = mB
kBT

for different

cases with easy plane anisotropy (b) Variation of anisotropy-induced contribution with

longitudinal field for the same.

lnZ ' ln
(eσ

σ
cosh ξ‖

)

+
1

4σ

[

(2 + ξ2
⊥) − 2ξ‖ tanh ξ‖

]

+
1

8σ2

×
[

5 + (2ξ2
‖ + ξ2

⊥) − (4 + ξ2
⊥)ξ‖ tanh ξ‖ − ξ2

‖ tanh2 ξ‖
]

. (5.38)

For the longitudinal field case, we obtain

MB,‖
m

' tanh ξ
{

1 − 1

2σ

[

1 +
2ξ

sinh(2ξ)

]

− 1

8σ2

[

4 − ξ
sinh(2ξ) − 2ξ

cosh2 ξ

]}

, (5.39)

and for the perpendicular case

MB,⊥
m

' ξ
( 1

2σ
+

1

4σ2

)

. (5.40)

For the sake of completeness we plot in Fig. (5.12) the magnetization versus longitudi-

nal field for both weak-anisotropy and strong-anisotropy cases for different values of the

dimensionless anisotropy parameter (σ).

We conclude this section by stating that the anisotropic potential does effect the magne-

tization process of single-domain particle but one can use the Langevin theory of super-

paramagnetism for the weak anisotropy case with anisotropy axes distributed at random.
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Figure 5.12: Variation of magnetization with longitudinal field ξ = mB
kBT

for different values

of σ (a) Weak-anisotropy case (b) Strong-anisotropy case.

5.4 Multi-domain Regime

We now provide an explanation for the decrease of the coercive field with the increase in

particle size. It is clear from the above discussion that this can not happen if the particles

still comprise single domains. Obviously a single to multi domain transformation takes

place at the maximum of coercivity. The critical diameter for which the single domain

structure becomes multidomain can be estimated from the balance between the energy to

form a single wall and the alternative magnetostatic energy which is given by dc = 9(AK)
1
2

(2πM2
s )

,

where A and K are the exchange and anisotropy constants respectively. The critical

diameters above which the particle becomes multidomain for the Co80Ni20, Ni, Fe and

Co are 30nm, 42nm, 10nm and 20nm respectively. For the sake of simplicity, we consider

only the axial symmetry case for the multi-domain regime. Then both the Gibbs free

energy per unit volume (V) and the distribution of magnetization orientation (W) are

axially symmetric i.e V and W are independent of φ.

We consider an arrangement of spin in a linear chain as shown Fig. (5.13). In the

following discussion one should keep in mind that we are not interested in the origin of

the domain wall, instead we assume its existence and incorporate the relevant terms in

the Hamiltonian. The Gilbert equation corresponding to the i-th spin is

~̇m
(i)

=
b

a
Ms ~m

(i) × ~H
(i)
eff + bMs(~m

(i) × ~H
(i)
eff) × ~m(i) (5.41)
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L
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Figure 5.13: Spin distribution near 180o domain wall (a) in real space (b) in probability

space.

For a particular site the spin can rotate over the surface of a sphere along a semicircular

curve (θ ε [0, π]). Writing all terms in spherical polar coordinate and proceeding as above

(section 2) we have

∂W (i)(θ, t)

∂t
=

b

sin θ

∂

∂θ

[

sin θ
(∂V

∂θ
W (i) + β−1∂W

(i)

∂θ

)]

. (5.42)

Here we use the condition dJi(θ,t)
dφ

= 0, which physically means there is no spin hopping

between two sites. This implies that the spin will start relaxing along the surface of the

sphere without changing its position along Z-axis. We use the transformation W (θ, t) =
√

Weq(θ)ψ(θ, t) with Weq(θ) = A0e
−U(θ)

ε and ε = kBT in equation (5.42) and we obtain

dψ

dt
= k1ψ

′′ + h1

(U ′′(θ)

2
− U ′2

4ε

)

ψ, (5.43)

where h1 = b
kBT

. Introducing a new function φ(θ) such that ψ(θ, t) = φ(θ)e−λ′t, we obtain

from equation (5.43)

λφ = εφ′′ +
(U ′′(θ)

2
− U ′2

4ε

)

φ, (5.44)

with λ = λ′

h1
. Now we shall define two operators A = ∂

∂θ
+ U ′

2ε
and A† = − ∂

∂θ
+ U ′

2ε
, such

that one can easily rewrite equation (5.44)

εA†Aφ = λφ. (5.45)

Without loss of generality, we can choose the ground state eigenvalue of A†A equal to

zero (since Aφ0 = 0 to get equilibrium distribution). Once we satisfy A†A = 0, the next

step in Super Symmetric (SUSY) Quantum Mechanics (QM) is to define the operator
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AA†. Now it is well known in SUSY QM that if φ1 is the first excited eigenstate of A†A

then it is the ground state of AA† with ground state eigenvalue λ1 [99]. One can apply a

variational method to obtain λ1

λ1 =

∫

φ1(θ)εAA
†φ1(θ)dθ

∫

φ1(θ)φ1(θ)dθ
. (5.46)

The solution (λ1) of the Fokker Planck equation can be obtained by using a trial wave-

function for the variational method as e
f(θ)
2ε . We shall use the following form of f(θ) in

different regions

f(θ) = U(c) − U(c− θ), −∞ ≤ θ ≤ c

f(θ) = U(θ), c ≤ θ ≤ d

f(θ) = U(d) − U(θ − d), d ≤ θ ≤ ∞

with the condition that f(θ) must match at θ = c and θ = d from either side. The

potential energy of the spins making an angle less than 900 can be approximated by a

harmonic oscillator like potential V (θ) = 1
2
Kθ2. Once we get the form of f(θ) we can

apply the variational method to equation (5.46). The result obtained for λ1 will be in

terms of variational parameters c and d. Setting the condition

dλ1

dc
=
dλ1

dd
= 0, (5.47)

we derive the desired relaxation rate as

λ1 ∼ h1(e
−(U0−U(θ1))

ε + e
−(U0−U(θ2))

ε ), (5.48)

where U0 is the barrier height and θ1 and θ2 are the two minima. It is clear that the

relaxation rate depends on the damping parameter as well as the barrier height, which

in turn depends on the value of anisotropy constant and the angle between successive

spins. The anisotropy constant is higher (one order of magnitude) for smaller particles,

giving rise to a higher coercive field. Even though our model, consisting of a linear chain

of ferromagnetic particles having just two domains, with their easy axes parallel to each
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other, and not containing a domain of closure, is a simplistic one, it can still be regarded

as a starting point to explain qualitatively the hysteresis of a multi domain system.

The above mentioned claim can be verified by comparing the theoretical results obtained

from the Monte Carlo (M. C.) simulation of our model with that of the experimental re-

sults of Gangopadhyay et al [79] and Luna et al [78]. The study of the relaxation dynamics

of a realistic multi-domain system is beyond the scope of this chapter. But one can think

of the following scheme. We can simulate the relaxation kinetics by the infinitesimal spin-

rotation dynamics [100]. This dynamics can be realized by the Metropolis algorithm. The

acceptance probability in the metropolis algorithm for the proposed rotation of the spin

at site j from Sj to R(Sj) is defined as W [Sj → R(Sj)] = min[1, exp(−βδEj)], where δEj

is the energy change due to the spin rotation. Here the relaxation of the dimensionless

system magnetization can be studied by starting from an initial state magnetized opposite

to the applied field. One can randomly choose one spin (say j-th) out of the whole spin

chain. Then the orientation of the j-th spin is kept fixed and the other spins are allowed

to relax. Considering the configurations of all other spins we can calculate the energy of

the j-th spin, change the orientation of the same spin by an infinitesimal small angle δθ,

and do the same calculation. In this way one can easily evaluate the energy profile of the

j-th spin as a function of θ. Using our model one can easily calculate the relaxation time

depending upon the special position of the spin and verify the model.

5.5 Summary and Conclusions

The particle size dependence of different magnetic properties of nanomagnetic particles

is explained from the view point of non-equilibrium statistical mechanics. At room tem-

perature, a maximum in coercive force field is observed. Thus below a certain critical

diameter dc, the coercive force decreases with the decrease of particle size and above dc

the coercive force increases with the decrease of the particle size. It indicates that two dif-

ferent mechanisms are responsible for this contrasting behaviour in magnetization reversal

process. Below dc, the decrease in Hc with decreasing particle size is due to thermal effects

observed in particles which behave as single domain particles. In this regime the magneti-
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zation reversal occurs by coherent spin rotation. The largest particles behave as magnetic

multidomain particles and the magnetization reversal occurs by wall motion. Assuming

the single to multi-domain transformation we have shown that the relaxation time of the

sample decreases with increase in particle size due to decrease in surface pressure and

anisotropy constant that yields a decrease in coercivity. In the multidomain regime we

apply a SUSY QM approach that matches with the alternate method of Coffey et al [83].

In addition, we extend the study to explain the decrease in coercivity of nanoparticles.

The important point to note is that in any experimental study of a single domain particle

at room temperature, one should perform a coercive field (Hc) versus particle size curve to

determine the peak in the curve and make all the measurements below dc to analyze the

behavior of single domain magnetic nanoparticles. At room temperature, the saturation

magnetization Ms decreases in an inverse linear relationship with the decrease of particle

size. The variation of the ratio Mr

Ms
as a function of particle size is somewhat similar to

that of the coercivity at 300K.

Turning to low temperatures (< 10K), the magnetic properties of nanoparticles are quite

different from that at the room temperature. At 10K the coercive field decreases mono-

tonically with increasing size over the whole range of sizes. The ratio Mr

Ms
also decreases

monotonically over the whole range of particle size at 10K. The contributions of thermal

and surface effects are different at different temperatures. As a result we observe dif-

ferences in magnetic behaviour at different temperatures, in particular in the saturation

magnetization, the coercivity and the ratio of the remanence to saturation magnetiza-

tion. The surface effect dominates at low temperature, whereas thermal effect dominates

at high temperature, as expected.

We have also demonstrated the effect of an anisotropic potential on equilibrium mag-

netization of such a collection of non-interacting single-domain magnetic nanoparticles.

It is seen that a random distribution of anisotropy axis reduces the anisotropy induced

contribution considerably, thereby validating the use of the Langevin theory of superpara-

magnetism for the weak anisotropy and random axis case.

Our results can be useful in the interpretation of magnetic data and magnetization rever-

sal process observed in nanocrystalline particles where the interparticle interaction can

be neglected. This study is also helpful in studying magnetic relaxation of nanoparticles
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which is very important in understanding magnetic recording technologies.



Chapter 6

Diffusion Enhancement in a Periodic Potential Under

High-frequency Space-dependent Forcing

6.1 Introduction

So far, we have studied the rotational Brownian motion of the giant magnetic moment

of a single domain nanomagnetic particle across an anisotropic potential barrier. In this

chapter we discuss the translational Brownian motion of an underdamped Brownian par-

ticle moving in a systematic periodic potential in the presence of a high-frequency space-

dependent forcing[101]. Brownian motion in periodic structures has various applications

to condensed matter physics, nanotechnology and molecular biology [102-104]. Adding

noise to deterministic nonlinear dynamics leads to interesting and important phenomena

such as stochastic resonance [105], Brownian motors and chaotic ratchet transport [106],

resonant activation [107], noise induced phase transition [108, 109], etc.. Thermal diffu-

sion of a Brownian particle which we will discuss here is of great interest in numerous

other contexts, namely Josephson junction [110], rotating dipoles in external fields [111],

superionic conductors [112], synchronization phenomena [113], diffusion on crystal sur-

faces [114], particle separation by electrophoresis [115], and biophysical processes such as

intracellular transport [102].

Here we focus on the underdamped motion of a Brownian particle which feels viscous

forces and random impulses from the surrounding medium and is confined by a potential

well. Our primary interest is to study the effect of an externally applied position depen-

dent driving force that is periodic in time. The frequency is much larger than all other

relevant frequencies of the system. Hence we can apply the usual Kapitsa analysis for

76
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high frequency oscillating fields [116]. It has earlier been shown that on time scales larger

than the period of perturbation the dynamics is equivalent to one in which the periodic

perturbation can be replaced by a time independent effective potential [117, 118]. Ref.

[118] treats the overdamped Brownian motion, whereas we deal with underdamped mo-

tion of the Brownian particle. The underdamped regime has also been studied by Dutta

and Burma [117], who have however based their analysis on the Fokker-Planck equation

approach. Here we provide an alternative derivation of the main results through the

Langevin dynamics, which is more straightforward.

Further we extend Kapitsa’s analysis by using the additional contributions to the effec-

tive potential arising from the space dependent periodic force for the calculation of the

thermal diffusion coefficient [119, 120]. One remarkable feature of our results is that the

effective diffusion coefficient of an underdamped Brownian particle in a periodic potential

in the presence of an externally applied space-dependent oscillating force is larger than

that in the absence of the external force by about twelve orders of magnitude. With

respect to bare thermal diffusion coefficient this enhancement is by about four orders of

magnitude. In addition, certain features of the ratchet mechanism in molecular motors

[121] are relevant in this context in terms of transport properties(currents).

6.2 Model

The stated Brownian dynamics is governed by the Langevin equation

mẍ = −γẋ− ∂

∂x
U(x) + F (x, t) + η(t), (6.1)

where m is the mass of the Brownian particle, γ is the friction coefficient, U(x) is the

confining potential, F(x,t) is the periodic driving force with a period τ and F(x,t) =

F(x,t+τ). Thermal fluctuations are modeled by the zero mean δ-correlated white noise

η(t) i.e. < η(t) > = 0 and < η(t)η(t′) >= 2γβ−1δ(t − t′), where β = (kBT )−1, kB being

the Boltzmann constant and T is the temperature. Our goal is to show that, on time

scales larger than τ , the dynamics can be mapped onto a modified Langevin dynamics in

which the periodic forcing is absent but the potential U(x) can be replaced by a suitable

effective potential Ueff (x). The methodology we follow is based on Kapitsa’s treatment
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for high frequency oscillating fields in parametric oscillations [122]. We derive the form

of the effective potential upto second order in ξ (expansion parameter which is related to

the inverse of the square of the oscillating frequency) in Sec. 6.3.

We also study the transport properties and diffusion coefficient for ratchet like systems.

The corresponding Langevin dynamics is governed by the equation

mẍ + γẋ = −V ′(x) + A(x) cos(Ωt) +
√

2γkBTη(t), (6.2)

where V(x) is a periodic potential with period L i.e. V(x) = V(x+L) and the prime denotes

1st derivative of V(x) with respect to x. In our case V (x) = −V0(sin(x)− µ sin(2x)) with

V0 = 1 and µ = 1
4

throughout this work. We define the above dynamics as the original

dynamics. Following Kapitsa’s treatment we derive in the sequel an effective potential for

which the dynamics is governed by the equation

mẍ+ γẋ = −V ′eff (x) +
√

2γkBTη(t), (6.3)

where Veff is derived in Sec. 6.3 below. The first basic quantity of interest in the transport

process is the average particle current defined as

< ẋ >= lim
t→∞

< x(t) >

t
. (6.4)

The other quantity of important interest is the effective diffusion coefficient which is

defined as

Deff = lim
t→∞

<< x2(t) >> − << x(t) >>2

2t
, (6.5)

where the two brackets respectively denote averages over the initial conditions of position

and velocity, and over all realizations of thermal noise. Exact analytical results for D are

known for two special cases. First in the absence of the periodic potential we have the

famous Einstein’s relation D̄ = kBT
γ

. Second is the case in which the periodic potential is

present but the external field A(x) cos(Ωt) is absent, wherein D is obtained as [123, 124]

D =
D̄

∫ L
0

dx
L
e

V (x)
kBT

∫ L
0

dy
L
e
−V (y)
kBT

. (6.6)

Numerically we calculate this diffusion coefficient for our periodic potential and it is seen

that D << D̄ as expected.
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Calculation of the diffusion coefficient in the presence of both externally applied space-

dependent periodic force and arbitrary periodic potential is not analytically possible.

Hence we solve Eq. (6.2) and Eq. (6.3) numerically, but by first converting them into

dimensionless forms. In doing this we recognize that the characteristic timescale τ0 that

governs the Newtonian dynamics: m d2x
dt2

= −V ′(x), is given by τ 2
0 = mL2

V0
. Therefore we

rescale x by dividing by L and rescale t by dividing by τ0, to obtain:

ẍ + bẋ = −V̂ ′(x) + a(x) cos(ωt) +
√

2bD0η̂ (6.7)

ẍ + bẋ = −V̂ ′eff (x) +
√

2bD0η̂, (6.8)

where Eq. (6.7) denotes original dynamics, whereas Eq. (6.8) is for effective dynamics.

The various dimensionless quantities appearing above are given by b = γτ0
m

, V̂ (x) = V (x)
V0

,

a = AL
V0

, ω = Ωτ0, D0 = kBT
V0

and η̂(t) =
√
τ0η(t).

6.3 Effective Potential

As mentioned earlier our focus is on the result that on time scales larger than the period

of perturbation, the dynamics is equivalent to one in which the time dependent periodic

perturbation can be replaced by a time independent effective potential [118, 122]. In

Sarkar and Dattagupta [118], it has been shown in great detail that the expression of the

effective potential does not alter in the presence of noise. We presume and verify that

this result is true even when the forcing term is space dependent. Further, unlike [118]

we treat the underdamped case from which all the results of [118] can be obtained as a

limit.

6.3.1 First Order Correction

It is evident from the nature of the field in which the particle moves that it will traverse a

smooth path and at the same time will execute small noisy fluctuations about that path.

Accordingly, we represent the function x(t) as a sum:

x(t) = X(t) + ξ(t), (6.9)
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where X(t) is a slow variable and ξ(X, t) is a fast variable. The following transformations

then follow:

ẋ = Ẋ + ξ̇(X, t),

ẍ = Ẍ + ξ̈(X, t),

∂

∂x
=

1

1 + ξ′
∂

∂X
. (6.10)

Now setting the noise term to zero and putting the above transformations in Eq. (6.1)

we obtain

m
(

Ẍ(t) + ξ̈(X, t)
)

= −γ
(

Ẋ(t) + ξ̇(X, t)
)

+ F (X + ξ, t)

− 1

1 + ξ′
∂

∂X
U(X + ξ). (6.11)

To find the effective potential experienced by the particle correct to first order, we perform

a Taylor series expansion of Eq. (6.11) upto first order. Thus,

mẌ(t) +mξ̈(X, t) = −γẊ(t) − γξ̇(X, t)

− 1

1 + ξ′
∂

∂X
(U(X) + ξU ′(X))

+ F (X, t) + ξF ′(X, t). (6.12)

The above Eq. (6.12) involves both ‘fluctuating’ and ‘smooth’ terms on the left and right

sides which must be separately equal. For the fluctuating terms we can simply put

mξ̈(t) + γξ̇(t) = F (X, t), (6.13)

where we take [117] F (X, t) = f(X) cos(ωt)+g(X) sin(ωt). Solving Eq. (6.13) we obtain,

ξ(X, t) =
1

m(ω2 + γ2

m2 )

[(

f(X) +
γ

mω
g(X)

)

cos(ωt)

+
(

g(X) − γ

mω
f(X)

)

sin(ωt)
]

. (6.14)

Since ω is large, 1
1+ξ′

' (1 − ξ′) is effective. Next combining Eq. (6.13) with Eq. (6.12)

and then averaging over a time period we finally obtain

mẌ(t) + γẊ(t) = −∂U(X)

∂X
+ < ξF ′(X, t) >, (6.15)
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where

< ξF ′(X, t) > = − 1

4m
(

ω2 + γ2

m2

)

[ ∂

∂X
(f 2(X) + g2(X))

+
2γ

mω
(f ′(X)g(X) − g′(X)f(X))

]

. (6.16)

With the help of Eq. (6.16) we can rewrite Eq. (6.15) as follows

mẌ(t) + γẊ(t) = −∂U(X)

∂X

− 1

4m
(

ω2 + γ2

m2

)

[ ∂

∂X
(f 2(X) + g2(X))

+
2γ

mω
(f ′(X)g(X) − g′(X)f(X))

]

, (6.17)

or,

mẌ(t) + γẊ(t) = −∂Ueff (X)

∂X
, (6.18)

with Ueff (X) = U(X) + U1(X), where

U1(X) =
1

4m
(

ω2 + γ2

m2

)

[ ∂

∂X
(f 2(X) + g2(X))

+
2γ

mω

∫ X

dy(f ′(y)g(y)− g′(y)f(y))
]

. (6.19)

It is clear that U 1(X) vanishes for space-independent forcing, as in [118].

6.3.2 Second Order Correction

To find the second order correction term in the effective potential the transformation

equations given in Eq. (6.10) have to be modified as

x = X + ξ(X, t) + ξ(X, t)ξ′(X, t),

ẋ = Ẋ + ξ̇ + ξ̇ξ′ + ξξ̇′,

ẍ = Ẍ + ξ̈ + ξ̈ξ′ + ξξ̈′ + 2ξ̇ξ̇′,
∂

∂x
=

1

1 + ξ′ + ξ′2 + ξξ′′
∂

∂X
. (6.20)
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Putting the above transformation in Eq. (6.1) and retaining terms upto second order in

ξ (O(ξ2)) we derive

m
(

Ẍ + ξ̈ + ξ̈ξ′ + ξξ̈′ + 2ξ̇ξ̇′
)

= −γ
(

Ẋ + ξ̇ + ξ̇ξ′ + ξξ̇′
)

−(1 − ξ′ − ξ′2 − ξξ′′)
[

U ′(X)

+U ′′(X)ξ + U ′(X)ξ′ + U ′′(X)ξξ′ + U ′(X)ξ′2

+U ′(X)ξξ′′ +
1

2
U ′′′(X)ξ2 + U ′′(X)ξξ′

]

+ F (X, t)

+ξF ′(X, t) + ξξ′F ′(X, t) +
1

2
ξ2F ′′(X, t).

Next, after performing time averaging we ultimately obtain

mẌ + γẊ = −U ′(X) + U ′(X) < ξ′2 >

− 1

2

∂

∂X
(U ′′(X) < ξ2 >)+ < ξF ′(X, t) >

= −∂Ueff

∂X
, (6.21)

with Ueff(X) = U(X)+U1(X)+U2(X), where U(X) is the systematic periodic potential,

U1(X) is the first order correction to the effective potential given by Eq. (6.19) and the

second order correction to the effective potential is given by

U2(X) =
1

4m2ω2(ω2 + γ2

m2 )

[

(f 2(X) + g2(X))U ′′(X)

− 8
∫ X

dy
(

f ′2(y) + g′2(y)
)]

. (6.22)

The results for U 1(X) and U2(X) are identical to those obtained by Dutta and Barma

[117] who have however employed a Fokker-Planck equation approach.

With the help of Eq. (6.19) and Eq. (6.22) we calculate the first order and second

order correction terms for the periodic potential V (x) and ultimately obtain the effective

potential Veff(x) = V (x) + V 1(x) + V 2(x) which are given by, for the space independent

case

Veff(x) =
( a2

4m2ω2(ω2 + γ2

m2 )
− 1

)

sin(x) (6.23)

+µ sin(2x)
( a2

m2ω2(ω2 + γ2

m2 )
− 1

)

,
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and for the space dependent case

Veff(x) =
( a2x2

4m2ω2(ω2 + γ2

m2 )
− 1

)

sin(x) (6.24)

+µ sin(2x)
( a2x2

m2ω2(ω2 + γ2

m2 )
− 1

)

+
a2x

m(ω2 + γ2

m2 )
(
1

2
− 2

mω2
),

where F (x, t) = a cos(ωt) and ax cos(ωt) for the space independent and space depen-

dent cases respectively. In Fig. (6.1) we plot the periodic systematic ratchet potential
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Figure 6.1: The periodic potential V(x).

V (x) = − sin(x)−µ sin(2x) with µ = 1
4
. In Fig. (6.2) and Fig. (6.3) we plot the effective

potential for the space independent and space dependent external force respectively. In

the next section we further extend this analysis by using these results for calculating the

effective diffusion enhancement and transport current.
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Figure 6.2: The effective potential Veff(x) when external force is space independent.
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Figure 6.3: The effective potential Veff(x) when external force is space dependent.

6.4 Numerical Scheme and Results

We numerically solve Eqs. (6.7) and (6.8) with the aid of the Heun scheme which is basi-

cally the Runge-Kutta algorithm. Our main interest, as emphasized earlier, is to compute

the effective diffusion coefficient which we do using Eq. (6.5). We calculate this quantity

for the original dynamics and effective dynamics for the two special cases: (a) space depen-

dent external periodic force and (b) constant amplitude external periodic force. We have

taken upto second order correction term in solving the effective dynamics. There are four

dimensionless parameters a,b,D0, and ω (defined earlier in terms of physical quantities)

and to define effective potential we need to specify three more parameters m, γ and µ. We
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fix b = 0.1, ω = 5.0, m = 1.0, γ = 0.1, µ = 0.25 and D0 = 0.025 throughout this work and

vary the parameter ‘a’. In Fig. (6.4) we have plotted effective diffusion coefficient versus

external force field strength (‘a’) for both the space dependent and space independent

cases. In both cases, the enhancement of effective diffusion coefficient as a function of the
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Figure 6.4: The effective diffusion coefficient for original and effective dynamics for two

cases (a) space dependent (b) space independent external periodic force. The parameters

which we use for this numerical calculation are b = 0.1, ω = 5.0, D0 = 0.025, m = 1.0 and

γ = 0.1.

amplitude ‘a’ is clearly noticeable. In the absence of the external force, D = 2.34× 10−10,

(calculated using Eq. (6.6)) and it agrees very well with the Heun scheme results when

‘a’ = 0. From Fig. (6.4) it is evident that the effective diffusion coefficient in a periodic

potential in the presence of an externally applied oscillating force can be larger than in

the absence of the external force by about twelve orders of magnitude, for certain values

of ‘a’. This enhancement is however about 4 orders of magnitude higher than the free

diffusion coefficient (D0). The enhancement is more pronounced for the space dependent

external periodic force than the constant amplitude external periodic force due to the

extra terms in effective potential for the space dependence of the external force.

It is known that there are two states of a driven Brownian dynamical system: the locked
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state, in which the particle stays inside one potential well, and the running state, for

which the particle runs over the potential barriers. The first regime is characteristic of a

small driving force strength. When the amplitude of the external field is made large, a

running state appears where we can see both diffusive and regular behavior of the par-

ticle. The most interesting feature in Fig. (6.4) is the resonance like behaviour of the

diffusion coefficient. This leads to the existence of an optimal ‘a’ for the enhancement of

the diffusion rate. This phenomena is reminiscent of stochastic resonance (SR) [125-127].

So we can hereby employ the acronym “SR” to imply acceleration of diffusion. By this we

mean that a new diffusion mechanism, with combined action of noise, spatially periodic

potential and time-periodic modulation can be more effective than that of free Brownian

motion, since Deff is shown to exceed unity in a large region around some optimal pa-

rameter regions. In these regions the optimal matching of the periodic force and noise

drive the particles up the potential hills during each time period. Then these particles

scatter at the potential barriers and finally they diffuse very quickly into wide regions.

Therefore in order to get the above mentioned diffusion enhancement we need the optimal

collective actions of three forces —- spatially periodic force, time periodic modulation and

stochastic stimulation. Further we should emphasize that the extra terms in the effective

potentials due to space dependence of the external force do indeed aid this diffusion en-

hancement mechanism.

We have also studied the current ‘J’ which is defined as the time average of the average

velocity over an ensemble of initial conditions. Thus it involves two different averages, the

first is over M initial conditions, which we take randomly centered around the origin and

with an initial velocity equal to zero. For fixed time tj we calculate the average velocity

vj = 1
M

∑M
i=1 ẋi(tj). The second average is over time and yields J = 1

N

∑N
j=1 vj. All quan-

tities of interest are averaged over 250 different trajectories and 104 periods. In solving

effective dynamics we have used upto second order correction term of effective potential

for both space dependent and space independent cases. In Fig. 6.5 we have shown the

behavior of the transport currents in case of space dependent external force. Initially the

current is zero, following which it increases and peaks at some optimal values of ‘a’, then

decreases with the increase of ‘a’. The following explanation will help to understand the

behavior of current. At very low force strength, escape jumps between the neighbouring



Chapter 6. Diffusion enhancement under high-frequency forcing. 87

wells are very rare i.e. the average directed current is very small. The input energy is
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Figure 6.5: The current J of the inertial rocked Brownian motor when external force

is space dependent. The parameters which we use for this numerical calculation are

b = 0.1, ω = 5.0, D0 = 0.025, m = 1.0 and γ = 0.1.

mostly expanded into the kinetic energy of the intrawell motion and eventually dissipates.

As ‘a’ is increased further, the Brownian motor mechanism starts to work and some part

of energy contributes to the net motion of the particle. Now due to inertia, the mean

velocity increases and reaches a maximum. Then ‘a’ reaches a second threshold value

above which the current starts to decrease because of the debilitating effect of the ratchet

potential. The occurrence of multiple reversals of the directed current, as is shown in the

Fig. 6.5 and Fig. 6.6 for low force strength, is an interesting feature of the inertial Brow-

nian motor system [128-133]. The phenomenon of current reversals can be described by

different stability properties of the perturbed rotating orbits of the system [131]. Current

reversals are also associated to bifurcations from chaotic to periodic orbits, in some cases,

as discussed by Mateos [130].

By comparing the figures (6.5) and (6.6) we can surmise that the current is much more

substantial for the space dependent external force case. Extra terms in the effective poten-

tial arising from space dependence of the external force do help in increasing the current.



Chapter 6. On the Brownian motion : From classical to quantal. 88

0 2 4 6 8 10

-2

0

2

4

6

8

10

J

a

Original
Dynamics

Effective
Dynamics

Figure 6.6: The current J of the inertial rocked Brownian motor when external force

is space independent. The parameters which we use for this numerical calculation are

b = 0.1, ω = 5.0, D0 = 0.025, m = 1.0 and γ = 0.1.

6.5 Summary and Conclusions

In this section we present an overview of the principal results of this chapter. We have ad-

dressed the problem of underdamped Brownian particle in a position dependent periodic

driving force in the high frequency regime. We have then calculated the effective potential

upto second order in the expansion parameter ξ and used these results to calculate the

effective diffusion coefficient and transport current. In the high frequency regime the par-

ticle makes small but rapid excursions around a smooth path along which the motion is

relatively slow. A systematic perturbative treatment in powers of the excursion amplitude

shows that the first order correction in the effective potential exists only if the externally

applied rapidly oscillating field is space dependent. This first order correction term (Eq.

(6.19)) is the average kinetic energy which contributes to the work done against damping.

The second order correction to the effective potential shows that a nontrivial contribution
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arises even for position independent driving.

We have employed our derived results for the calculation of the effective diffusion coef-

ficient and transport current. We obtained the effective diffusion coefficient by solving

both the original dynamics and effective dynamics. We noted a giant enhancement of dif-

fusion and the results arising from original and effective dynamics agree very well. This

validates our method of calculation in the high frequency regime. The enhancement of

diffusion is a result of the optimal collective actions of spatially periodic gradients, time

periodic modulation and thermal noise. The enhancement is much more pronounced for

the space dependent periodic external force which can be understood in terms of the ex-

tra terms arising in the effective potential from the space dependence of external force.

We have analyzed the transport properties and the behavior of current for the Brownian

motor mechanism and compared the currents for two cases: space dependent and space

independent external forces. The current is larger for the space dependent case.

In a recent paper, Coupier et al [134] have shown experimentally the diffusion enhance-

ment of a single file of particles moving in a fluctuating modulated quasi-1D channel.

They observed diffusion of a circular file of particles for two different channels guiding the

particles : a fluctuating modulated channel created by other particles and a bald channel

without any modulation. The diffusion amplitude in a fluctuating potential is much larger

than in a bald channel. We have shown [101] that diffusion of a single particle in a mod-

ulated potential can be largely enhanced if the particle is excited by a rapid fluctuating

force. In the same way Coupier et al [134] have attributed the diffusion increase to the

fluctuations of the modulated potential felt by the outer balls. The fluctuating part of

the force is being associated with the momentum transfers resulting from the oscillations

of the balls located in the inner shell.

Finally we would like to emphasize once again the practical implications of this work. The

parameters which enter the effective potential can be used to separate different species of

Brownian particles by identifying the minima of the effective potential. One can control

the diffusion rates by varying periodic spatial gradients and the space dependent external

field. In addition to myriad applications mentioned earlier, systems described by Eq.

(6.1) are realized for charged particles moving on thermal surfaces under periodic poten-

tials subjected to time varying fields. Recent motivation to study these systems has been
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inspired by the theoretical modelling of the molecules called kinesin and myosin, which

possess the ability to move unidirectionally along structural filaments of microtubulin and

actin.



Chapter 7

Dissipative Diamagnetism : Gibbs Approach to

Equilibrium Statistical Mechanics.

7.1 Introduction

Diamagnetism, which occurs as a result of the orbital motion of electric charges in the

presence of a magnetic field, is an interesting and important problem. It was shown

by Bohr and Van Leeuwen that when classical statistical mechanics are applied to the

calculation of the diamagnetic moment, the answer is identically zero [135]. Thus, dia-

magnetism is an intrinsically quantum mechanical property, the treatment for which was

provided by Landau after the advent of quantum mechanics [136]. There is an interesting

issue of the role of the boundary within which the charges move, as was studied in depth

by Van Vleck and Peierls [137, 138]. While in classical statistical mechanics the contribu-

tion to the diamagnetic moment arising from the orbiting charges within the bulk of the

container exactly cancels the contribution coming from the boundary-currents, this can-

cellation is incomplete in the quantum case, yielding a non-zero value of the diamagnetic

moment. The boundary currents or edge currents are also important in the context of the

quantum Hall effect [139]. In an earlier work, Dattagupta and Singh [140] discussed the

role of dissipation in diamagnetism. Because the diamagnetic moment is proportional to

the expectation value of the vector product of the operators ~r and ~v, ~r being the position

of the charge and ~v its velocity, the calculation was set up as a transport problem, much

like the celebrated Drude conductivity of charge carriers [141]. Thus, the stationary form

of the magnetic moment was obtained from the asymptotic (i.e. time t → ∞ ) limit of

the exact solution of an underlying quantum Langevin equation (QLE) for ~r and ~v [142].
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Naturally, the role of the boundary had to be carefully assessed by first solving the QLE

in the presence of a confining boundary, then taking the t→ ∞ limit for the diamagnetic

moment, and finally removing the boundary.

The QLE employed in Dattagupta and Singh [140] is in the spirit of the Caldeira Leggett

model for which the harmonic oscillators are viewed to constitute a quantum bath that

defines the temperature [143]. Here in Chapter 7 we present an alternative calculation

of the diamagnetic moment, which is now viewed as a thermodynamic property, deriv-

able from the derivative of the Gibbs partition function[144]. Thus the full Hamiltonian

comprising the charged particle in a magnetic field, the harmonic oscillators and their

coupling, is treated in the canonical ensemble of equilibrium statistical mechanics. For

reasons mentioned earlier, a confining boundary has to be also included, which is to be

eliminated only after the derivative of the partition function is computed. In the present

calculation, the temperature T is that of an ‘invisible’ bath in which the canonical sys-

tem is viewed to be embedded. While Dattagupta and Singh [140] have considered only

the ohmic dissipation in the Caldeira-Leggett model, both non-ohmic and ohmic cases are

treated here. We may point out that the combined effect of dissipation and confinement on

Landau diamagnetism, the latter arising from coherent cyclotron motion of the electrons,

is particularly relevant in the context of intrinsic decoherence in mesoscopic structures

and fluctuation induced diamagnetic susceptibility and conductivity in superconducting

systems [139, 146-149].

7.2 Model, Formalism and Effective Action

The starting point of Dattagupta and Singh [140] as indeed in this section is the Feynman-

Vernon [150] Hamiltonian for a charged particle e in a magnetic field ~B:

H =
1

2M
ω2

0~x
2 +

1

2M

(

~p− e ~A

c

)2
+

N
∑

j=1

[ 1

2mj

~pj
2 +

1

2
mjωj

2(~xj − ~x)2
]

, (7.1)

where the first term is the Darwin [151] term representing a confining potential to recover

the correct boundary contribution, ~p and ~x are the momentum and position operators

of the particle, ~pj and ~xj are the corresponding variables for the bath particles, and ~A

is the vector potential. We will work in the ‘Symmetric Gauge’. The bilinear coupling
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between ~x and ~xj as envisaged in Eq. (7.1) has been the hall mark of the Caldeira-

Leggett approach to dissipative quantum mechanics [143, 152]. Further, it has been

shown by Chang and Chakravarty that a fermionic heat bath for electron-hole excitations

near the Fermi surface, as appropriate for a metal, can indeed be represented by bosonic

operators, which are just the second quantized forms of the harmonic oscillator variables of

the Caldeira Leggett model, especially when ohmic dissipation is assumed [153]. Assuming

the ~B field to be along the z-axis, all the vectors in Eq. (7.1) can be taken to lie in the

xy-plane. Thus, the vector ~x has two components x and y etc.

Using the imaginary time path integral method we calculate the effective Euclidean action.

The partition function of the whole system is given by

Z =
∫

D[~x] exp
[

− Ae[~x]

h̄

]

, (7.2)

where Ae[~x] is the effective Euclidean action and the functional integral is over all periodic

paths with period h̄β. The free energy is then given by

F = − 1

β
lnZ. (7.3)

The important thermodynamic quantity, viz., the magnetization can easily be obtained

by taking the first derivative of F with respect to the magnetic field B, applied along the

z-axis:

Mz = −∂F
∂B

. (7.4)

Having laid down the background to the calculation of diamagnetism we pose and answer

the following question in this part. Should we not be able to calculate the equilibrium

magnetization directly from Eq. (7.1) by following the usual Gibbsian statistical mechan-

ics in which all the terms in Eq. (7.1) are treated on the same footing and there is no

separation between what is a system and what is a bath? If the answer to this question

is in the affirmative and the resultant magnetization matches with the result derived in

Dattagupta and Singh [140] in the ‘equilibrium limit’, that would indeed make the Brow-

nian motion approach of Dattagupta and Singh [140] equivalent to the usual statistical

mechanics method.

Our method of calculation is based on the functional integral approach to statistical
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mechanics which we find to be the most convenient tool for studying charged particle

dynamics in a magnetic field [154-158]. The canonical operator exp(−βH) is related to

the time evolution operator exp(− iHt
h̄

) by an analytic continuation procedure known as

Wick’s rotation t = −ih̄β. So in order to obtain the Euclidean action we have to ana-

lytically continue to imaginary time τ = it. The Euclidean action corresponding to the

Hamiltonian in Eq. (7.1) can be written as :

Ae =
∫ h̄β

0
dτ [LS(τ) + LB(τ) + LI(τ)], (7.5)

where the subscripts S, B and I stand for ‘system’, ‘bath’ and ‘interaction’ respectively.

The corresponding Lagrangians are enumerated as:

LS(τ) =
M

2

[

~̇x
2
(τ) + ω2

0~x
2(τ) − iωc(~x(τ) × ~̇x(τ))z

]

, (7.6)

where ωc = eB
Mc

, is the cyclotron frequency,

LB(τ) =
N

∑

j=1

1

2
mj[~̇x

2

j(τ) + ω2
j~x

2
j(τ)], (7.7)

LI(τ) =
N

∑

j=1

1

2
mjω

2
j [~x

2(τ) − 2~xj(τ) · ~x(τ)]. (7.8)

Since the path x(τ) has imaginary time periodicity x(h̄β) = x(0), we can perform imagi-

nary time Fourier series expansion of system variables and bath variables as follows:

~x(τ) =
∑

n

~̃x(νn)e−iνnτ , (7.9)

~xj(τ) =
∑

n

~̃xj(νn)e−iνnτ , (7.10)

where the Bosonic Matsubara frequencies νn are given by

νn =
2πn

h̄β
, n = 0,±1,±2, ....., (7.11)

Using Eqs. (7.9) and (7.10) and following the detailed treatment given by Weiss [157] the

system-part of the action in terms of Fourier components is:

AS
e =

M

2
h̄β

∑

n

[

(ν2
n + ω2

0)(~̃x(νn) · ~̃x∗(νn)) + ωcνn(~̃x(νn) × ~̃x
∗
(νn))z

]

. (7.12)
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Further the combined contributions of the bath and the interaction terms to the action

can be written as:

AB−I
e =

M

2
h̄β

∑

n

ξ(νn)(~̃x(νn) · ~̃x∗(νn)), (7.13)

where

ξ(νn) =
1

M

N
∑

j=1

mjω
2
j

ν2
n

(ν2
n + ω2

j )
. (7.14)

Introducing the spectral density for bath excitations as:

J(ω) =
π

2

N
∑

j=1

mjω
3
j δ(ω − ωj), (7.15)

we may rewrite

ξ(νn) =
2

Mπ

∫ ∞

0
dω

J(ω)

ω

ν2
n

(ν2
n + ω2)

. (7.16)

Now, combining Eq. (7.13) with Eq. (7.12), the full action can be expressed as:

Ae =
M

2
h̄β

∑

n

[

(ν2
n + ω2

0 + νnγ̃(νn))(~̃x(νn) · ~̃x∗(νn)) + ωcνn(~̃x(νn) × ~̃x
∗
(νn))z

]

, (7.17)

where the ‘memory-friction’ is given by

γ̃(νn) =
2

Mπ

∫ ∞

0
dω

J(ω)

ω

νn

(ν2
n + ω2)

. (7.18)

Note that ~̃x(νn) is a two-dimensional vector (x̃(νn), ỹ(νn)). Introducing then normal

modes:

z̃+(νn) =
1√
2
(x̃(νn) + iỹ(νn))

z̃−(νn) =
1√
2
(x̃(νn) − iỹ(νn)), (7.19)

Eq. (7.17) can be rewritten in a ‘separable’ form:

Ae =
M

2
h̄β

∑

n

[

(ν2
n + ω2

0 + νnγ̃(νn) + iωcνn)(z̃+(νn)z̃∗+(νn))

+(ν2
n + ω2

0 + νnγ̃(νn) − iωcνn)(z̃−(νn)z̃∗−(νn))
]

. (7.20)

Equation (7.20) is the required effective Euclidean action.
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7.3 Free Energy and Magnetization.

In this section we employ the action given by Eq. (7.20) to first calculate the canonical

partition function and from it, the thermodynamic free energy. In doing this calculation

we tacitly assume a la Gibbs that the entire Hamiltonian, described by Eq. (7.1), is

embedded in a thermal bath that defines the temperature of the system. This is in

contrast to the QLE approach in Dattagupta and Singh [140] which assumes that it is the

subsystem alone, comprising the electron in a magnetic field, that is immersed in a heat

bath of quantum harmonic oscillators.

From Eq. (7.20) the partition function can be written as:

Z =
2π

Mβ

∏

n

[

(ν2
n + ω2

0 + νnγ̃(νn))2 + ω2
cν

2
n

]−1
, (7.21)

where, we have used the definition of partition function as given in Eq. (7.2). In view of

Eq. (7.3) the Helmholtz Free energy F can be deduced from Eq. (7.21) as

F =
1

β
ln

(Mβω4
0

2π

)

+
2

β

∞
∑

n=1

ln
[

(ν2
n + ω2

0 + νnγ̃(νn))2 + ω2
cν

2
n

]

, (7.22)

where the first term is independent of the magnetic field and owes its existence purely to

the Darwinian constraining potential. Equation (7.22) contains all the thermodynamic

properties, the most important of which is the magnetization given by the negative deriva-

tive of F with respect to B :

Mz = −
∞
∑

n=1

4
βB
ω2

cν
2
n

[(ν2
n + ω2

0 + νnγ̃(νn))2 + ω2
cν

2
n]
, (7.23)

thus yielding a manifestly negative magnetization, the hallmark of diamagnetism.We ad-

ditionally note that the dissipative system of a charged quantum oscillator in an external

magnetic field is still diamagnetic. Equation (7.23) identically matches with the asymp-

totic (t→ ∞ ) limit of the expression obtained by Li etal [142] from a quantum Langevin

equation formulation. Equation (7.23) can be recast in terms of dimensionless parameters

like ζ(= h̄γ̃(νn)
2kBT

), νc(=
h̄ωc

2kBT
) and ν0(=

h̄ω0

2kBT
) as follows:

Mz = − B

kBT

( eh̄

Mc

)2
∞
∑

n=1

1

[nπ +
ν2
0

nπ
+ ζ]2 + ν2

c

. (7.24)
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In the limit ν0 = 0 the above equation (7.24) reduces to

Mz = −|e|h̄
Mc

νc

∞
∑

n=1

1

ν2
c + (ζ + nπ)2

. (7.25)

It has often been felt, starting from the old Larmor theory of diamagnetism [137], that

Mz ought to be simply proportional to the mean-squared electron radius, as it connects

to the square of the vector potential ~A occurring in the Hamiltonian in (1) [147]. In

order to explore this connection, we now switchover to the calculation of the dispersion

of position in equilibrium states which is given by

< x2 >=
1

Mβω2
0

+
2

Mβ

∞
∑

n=1

ν2
n + ω2

0 + νnγ̃(νn)
[

(ν2
n + ω2

0 + νnγ̃(νn))2 + (νnωc)2
] . (7.26)

From Eq. (7.26) it is evident that the mean square radius < x2 > decreases monotonically

with the increasing strength of the dissipative factor (γ̃(νn)). Combining Eq. (7.26) with

Eq. (7.23) we obtain

Mz = − 2B

Mc

[

< x2 > − 1

Mβω2
0

− 2

Mβ

∞
∑

n=1

ω2
0 + νnγ̃(νn)

[

(ν2
n + ω2

0 + νnγ̃(νn))2 + (νnωc)2
]

]

. (7.27)

Even after ignoring the classical equipartition term (i.e. the first term on the right of Eq.

(7.26)) we find that Mz in magnitude is further decreased from < x2 > by a nontrivial

damping dependent term given by a summation over n. This implies actually an increase

beyond the value of < x2 >, in view of the overall positive sign in front of the sum over

n. The origin of this additional contribution may be traced to the fact that the treatment

provided above is an exact one, including the linear term in ~A. Be that as it may, the

decrease in magnitude of diamagnetization, as the damping increases, may be interpreted

to be due to the squeezing of < x2 > due to dissipation. Thus the present effect is related

to how dissipation diminishes the fluctuation induced diamagnetic susceptibility (above

Tc) of superconducting grains.

One can also re-express the equilibrium dispersion Eq. (7.26) in terms of dimensionless

parameters ζ, νc and ν0

< x2 > =
h̄2

4MkBT

[ 1

ν2
0

+
∞
∑

n=1

1 + ( ν0

nπ
)2 + ζ

nπ

[nπ +
ν2
0

nπ
+ ζ]2 + ν2

c

]

. (7.28)
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Figure 7.1: Plot of 2kBT
B

(

Mc
eh̄

)2Mz versus the damping parameter ζ for the both ohmic

(J(ω) ∼ ω) and nonohmic (J(ω) ∼ ω3) cases.

Now to make our theoretical analysis more accessible and more interesting we numerically

plots our main results i.e Eq. (7.24) and Eq. (7.28). We consider both the frequency

dependent and independent damping cases i.e both nonohmic (J(ω) ∼ ω3) and ohmic

(J(ω) ∼ ω) dissipation. We plot in Fig. (7.1) magnetization Mz versus dimensionless

damping parameter ζ for different values of νc in accordance with Eq. (7.24) . It is seen

that Mz monotonically approaches zero for large value of ζ, although this approach is

slower the larger νc is. A large value of νc gives strong quantum effect which ultimately

yields classical like effects when dissipation ζ is strong. In Fig. (7.2) we plot equilibrium

position dispersion versus ζ for different values of νc. Here < x2 > decreases monotoni-
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cally to zero for large value of ζ, although the behavior of < x2 > is different from Mz.
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Figure 7.2: Plot of equilibrium position dispersion < x2 > in unit of h̄2

4MkBT
for both ohmic

(J(ω) ∼ ω) and nonohmic (J(ω) ∼ ω3) dissipation cases.

7.4 Equilibrium Position Autocorrelation Function

In this section we calculate the position autocorrelation function from the ‘equilibrium’

Gibbsian ensemble form of the Euclidean action for the Feynmann-Vernon model. This

equilibrium position autocorrelation function actually measures the spontaneous fluctua-

tions of the system dgrees of freedom due to coupling with the environment. The position
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autocorrelation function in equilibrium is defined as

C(t) = 〈~x(t) · ~x(0)〉 = Tr((~x(t) · ~x(0))ρβ), (7.29)

where ρβ is the equilibrium density matrix of the full system and ~x is the two dimensional

position vector in the x-y plane.. We determine C(t) by first calculating its imaginary

time version starting from the Euclidean action of the system as described by Eq. (7.1)

SE[~x] =
∫ h̄β

0
dτ

(m

2
~̇x

2
+
m

2
ω2

0~x
2 + imωc(~̇x× ~x)z

)

+
1

2m

∫ h̄β

0
dτ

∫ h̄β

0
dσγ̃(τ − σ)~x(τ) · ~x(σ)

+
∫ h̄β

0
dτ ~f(τ) · ~x(τ), (7.30)

where the first term (within round brackets) takes care of the system part, the second

term accounts for the coupling to the environment and the third term corresponds to the

interaction with an external force, in imaginary time. This helps us to determine the

correlation function by variation with respect to this force [159, 160]

〈~x(τ) · ~x(σ)〉 = h̄2Tr
( δ

δ ~f(τ)

δ

δ ~f(σ)
ρβ

)

~f=0
. (7.31)

It is sufficient to restrict ourselves to the classical path for the calculation of the auto-

correlation function [159, 160]. Thus the Fourier representation of the classical Euclidean

action becomes [92, 159]

SE
cl = − 1

2mh̄β

+∞
∑

n=−∞

[ 1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 − iωcνn

+
1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 + iωcνn

]

×
∫ h̄β

0
dτ

∫ h̄β

0
dσ ~f(τ)~f(σ) exp(iνn(τ − σ)), (7.32)

where νn = 2πn
h̄β

are the so-called Matsubara frequencies. Since the force appears only

through the action in the exponent of the equilibrium density matrix, we can easily

evaluate the functional derivatives according to Eq. (7.30) and obtain the position auto-

correlation function in imaginary time:

C(τ) =
1

mβ

+∞
∑

n=−∞

[ 1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 − iωcνn

+
1

ν2
n + γ̃(|νn|)νn

m
+ ω2

0 + iωcνn

]

exp(iνnτ).

(7.33)

The real time correlation function cannot be obtained by simply replacing τ by it, because
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Figure 7.3: The analytic continuation of the imaginary time correlation function to real

times by using the contours depicted in (a) and (b) to obtain Eq. (7.34).

for negative times the sum does not converge. The idea is to express the sum in Eq. (7.32)

as a contour integral in the complex frequency plane and look for a function which is well-

behaved at infinity, but has poles at ω = iνn [161]. This requirement is fulfilled by the

term : h̄β
1−exp(−h̄βω)

. Now doing the integration along the contour shown in Figs. (7.3-a)

and (7.3-b) and after some algebra, we find the real time correlation function as

C(t) =
h̄

πm2

∫ +∞

−∞
dω

[ γ̃(ω)ω

(ω2 − ω2
0 − ωωc)2 + γ̃2(ω)ω2

m2

+
γ̃(ω)ω

(ω2 − ω2
0 + ωωc)2 + γ̃2(ω)ω2

m2

]

× e(−iωt)

1 − e(−h̄βω)
. (7.34)

7.5 Summary and Conclusion

Equation (7.23) embodies several intriguing results which deserve special comments:

(1) Diamagnetic susceptibility in small particles is proportional to the mean squared radius

< x2 > of the charged particles in this grain; < x2 > is squeezed due to dissipation and

hence fluctuation induced diamagnetic susceptibility of superconducting grains also de-

creases. This is an important message of the present work. (2) It has often been seen that

while the approach to equilibrium does depend on relaxation parameters such as damp-

ing, the equilibrium results themselves are independent of such parameters [162, 163].

The diamagnetization is one of the rare equilibrium properties which depends directly on

the damping parameter γ that characterizes the dissipative dynamics of the underlying
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Hamiltonian. The reason is, like in the much studied problem of quantum dissipation of

a harmonic oscillator [164], the system-bath coupling is so strong that it needs an exact

treatment. Thus the degrees of freedom of the entire many body system are inexorably

entangled with each other and therefore, it is no longer meaningful to separate what is

a system from what is a bath. In this context we should mention that the derivation

of Boltzmann distribution exp(−βH) only works in the limit of vanishing interaction

strength [165] and indeed this has been discussed for the Caldeira-Leggett model by Ben-

guria et al[166]. But ours is a calculation in which the system-bath interaction has been

treated exactly. (3) Diamagnetism as a material property is seen to have components

of both thermodynamics and transport phenomena. The thermodynamic nature of the

property is rooted on its being able to be calculated from the free energy, as shown here.

On the other hand, diamagnetism, like the Drude conductivity [141], is also based on

transport mechanism in that it is related to the expectation value of the operator (~r× ~v)

(see Dattagupta and Singh [140]). (4) Normally, in statistical mechanics, a thermody-

namic limit is taken as a result of which surface contributions to bulk become irrelevant.

However, for diamagnetism the surface enters crucially, as argued above; even though,

there are fewer surface electrons than in the bulk, their contribution to the operator ~r in

(~r×~v) is substantial. A remarkable feature of diamagnetism is the need to first calculate

the magnetization in the thermodynamic limit and then switch the boundary off i.e. by

setting ω0 = 0. Because for a mesoscopic system surface effects are non-negligible, the

present study has a bearing on our understanding of mesoscopic structures.(5) It has been

argued by Jayannavar and Kumar [167], not only is there no classical diamagnetism —

due to the Bohr-Van Leeuwen theorem — there is no dissipative classical diamagnetism

either. Thus, the time-dependent, classical diamagnetization relaxes to zero, a damping-

independent result. Therefore, we emphasize once again that the appearance of damping

terms in equilibrium answers, as discussed under points (2) and (5), is an intrinsically

quantum aspect. (6) Finally, we have derived the equilibrium position autocorrelation

function a la of Gibbs. We use this result in the next chapter which is based on the

QLE i.e. a la Einstein to establish the fluctuation-dissipation relationship in the con-

text of dissipative diamagnetism. We further demonstrate the equivalence of the Einstein

and the Gibbs approaches to Statistical Mechanics for the phenomenon i.e. dissipative
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diamagnetism at hand.



Chapter 8

Landau-Drude Diamagnetism: Fluctuation,

Dissipation and Decoherence.

8.1 Introduction

As discussed in Chapter 7, diamagnetism is a material property that characterizes the

response of an ensemble of charged particles to an applied magnetic field. The magnetic

field causes cyclotron motion of each particle, thereby creating an orbital magnetic mo-

ment, governed by Faraday-Lenz’s law. Thus the system exhibits a negative magnetic

susceptibility, the hallmark of diamagnetism. But the remarkable feature is that the

diamagnetism vanishes within the framework of classical Gibbsian statistical mechanics

which is known as the celebrated Bohr-Van Leeuwen’s (BVL) theorem [135]. The quan-

tum result for nonvanishing diamagnetism is little hard to explain intuitively. It arises

from the fact that the boundary electrons have different quantized velocities than those

which do not touch the walls of the container, and so the magnetic moments of these two

types of electrons do not compensate each other as in classical theory. Classically both

types have the Maxwell-Boltzmann distribution of velocities.

The problem of diamagnetism which was first solved by Landau [136] in 1930 is still an

enigmatic subject. The Landau diamagnetism provides a unique platform for discussing

the contemporary relevant issues like the role of boundary, dissipation, the meaning of

thermodynamic limits and above all the environment induced decoherence. In the chap-

ter 7 we have analyzed the role of boundary electrons, dissipation and the meaning of

thermodynamic limits. In the present chapter we want to discuss the consequences of

coupling of a system to its environment[168]. Mainly three types of effect can be observed
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due to the environmental coupling. First, energy may irreversibly be transferred from

the system to the environment in the manner of dissipation [143, 169, 170]. Second, the

spontaneous fluctuations in the system in thermodynamic equilibrium, maintained by its

coupling to the environment, govern the response of the system degrees of freedom to

weak, external stimuli [157, 158]. Finally the entanglement between the system and the

environment degrees of freedom destroys the coherent superposition of quantum states,

leading to decoherence [171].

We discuss all the three above mentioned effects in the context of Landau diamagnetism

which is inherently and intrinsically quantum in nature. For the purpose of investigat-

ing fluctuation, dissipation and decoherence in what we call Landau-Drude diamagnetism

[13, 168] it is convenient to use the formulation given by Ford et al [172, 173], following

the classical treatment due to Zwanzig [174]. Starting from the Feynman-Vernon model

in which a particle moving in an arbitrary potential is assumed to be linearly coupled

to a collection of quantum harmonic oscillators [154], these authors derive a quantum

Langevin equation (QLE). We use this QLE as the basis of our further discussion, in

what may be referred to as the Einstein approach to Statistical Physics [145].

At this stage it is important to indicate in what ways is our present work an advance-

ment on existing results in the literature, in order to put matters in perspective. Ford

et al [175] had solved the problem of a charged oscillator in a harmonic potential well

and linearly coupled to a heat bath using the generalized QLE. This solution was further

extended by Li et al [173] but in the presence of a magnetic field. From the asymptotic

expression, which obtains in the limit of time t approaching infinity, these authors de-

rived the influence of dissipation on the diamagnetic moment. While the diamagnetism

is the first moment of an underlying quantum distribution function, we go beyond this in

the present discussion by treating the fluctuations in the asymptotic state, embodied in

the generalised susceptibility tensor. We further connect the latter, derived from a ‘non-

equilibrium’ QLE approach, to the position autocorrelation function calculated from the

‘equilibrium’ Gibbsian ensemble form of the Euclidean action for the Feynmann-Vernon

model in the previous chapter (Eq. 7.33). This connection allows us to establish a relation

between the position autocorrelation function and the imaginary part of the susceptibility

—- a statement of the fluctuation-dissipation theorem, and thus unify equilibrium and
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non-equilibrium statistical mechanics, in the context of dissipative diamagnetism. This is

a new result.

The destruction of quantum coherence by environment-induced dissipation is of central

interest in atomic physics [176], condensed matter physics [177], as well as chemical and

biological reactions [178]. We discuss this environment-induced decoherence in the con-

text of dissipative diamagnetism. Landau diamagnetism has its origin in coherent circular

motion of the electron in a plane normal to the magnetic field. This coherent motion is

disturbed due to interaction with the environmental degrees of freedom, e.g. defects,

phonons, etc. We illustrate how the system transits from the coherent ‘Landau regime’

to the decoherent ‘Bohr-Van Leeuwen regime’ [135]. Egger et al [179] have discussed the

environment induced destruction of quantum coherence for the damped harmonic oscilla-

tor and for the dissipative two-state system and have established the dependence of this

transition on the initial state of preparation. Here we have extended this study of Egger

et al [179] and have shown that the coherent-decoherent transition depends on the par-

ticular dynamical quantity (e.g., correlation function, occupation probability, etc.) under

consideration for the case of Landau-Drude diamagnetism too.

8.2 Model, Quantum Langevin Equation and Einstein Approach

We start from the same Feynman-Vernon Hamiltonian (cf. Eq. (7.1)) for a charged

particle in a magnetic field ~B, coupled to an environment of quantum harmonic oscillators

[154]. As discussed earlier, the contribution of the boundary electrons, are included

through a confining harmonic trap, described by the first term on the right hand side of

Eq. (7.1), the effect of which can be removed at the end of the calculation by setting

ω0 = 0. Now following Ford et al [172, 173] one can write the QLE emanating from Eq.

(7.1) as

m~̈x +
∫ t

−∞
dt′γ(t− t′)~̇x(t′) +mω2

0~x−
e

c
(~̇x× ~B) = ~F (t), (8.1)

where the auto-correlation and the commutator of ~F (t) are given by

〈

{Fα(t), Fβ(t′)}
〉

= δαβ

2

π

∫ ∞

0
<[γ̃(ω + i0+)]h̄ω coth(

h̄ω

2kBT
) cos{ω(t− t′)}dω, (8.2)
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〈

[Fα(t), Fβ(t′)]
〉

= δαβ

2

iπ

∫ ∞

0
<[γ̃(ω + i0+)]h̄ω sin{ω(t− t′)}dω, (8.3)

where γ̃(s) =
∫∞
0 dt exp(ist)γ(t) (Im s > 0).

At this stage we introduce the nomenclature of ohmic dissipation as well as non-ohmic

dissipation. Defining the spectral density of the environmental degrees of freedom as

J(ω) = π
2

∑N
j=1mjω

3
j δ(ω − ωj), we can rewrite the memory kernel γ(t) in terms of the

spectral density as

γ(t) = Θ(t)
2

mπ

∫ ∞

0
dω

J(ω)

ω
cos(ωt), (8.4)

where Θ(t) is the Heaviside step function. As motivated in the previous chapter, we often

deal with physical situations which can be described by such a Caldeira-Leggett model,

as given in Eq. (7.1), consisting of only one or a few relevant dynamical variables in con-

tact with a huge environment which is assumed to be a collection of harmonic oscillators

[170, 180, 181]. In the ohmic case, damping is frequency-independent and the spectral

density J(ω) = mγω. The memory kernel γ(t− t′) is thus replaced by mγδ(t− t′), so that

<[γ̃(ω+ i0+)] reduces to mγ, a constant. In this limit we get an ordinary Langevin equa-

tion. It is interesting to note that the underlying stochastic process is still non-Markovian,

even though there is no memory. On the other hand, the non-ohmic case can be realized

when the bath consists of phonons, as appropriate for instance, in the tunneling of an

atom in the bulk [170]. Recently Louis and Sethna [182] have shown that the case of

tunneling between surfaces corresponds to “ohmic” dissipation in contrast to the bulk

case, where the dissipation is of the “super-ohmic” variety. In the non-ohmic case, for a

bath comprising aquastic phonons the spectral density is defined as J(ω) = mγ̃(ω), where

γ̃(ω) = γω3 [177]. The damping kernel γ̃(ω) then brings in memory-friction effects.

8.3 Generalized Susceptibility Tensor

In this section we consider the linear response of the position coordinate to an external

force ~f(t), assumed small. By imagining the force to have been switched on at time

t = −∞ all transient effects can be ignored and the nontransient response can be captured
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by the frequency-dependent generalised susceptibility. The corresponding QLE now reads

m~̈x +
∫ t

−∞
dt′γ(t− t′)~̇x(t′) +mω2

0~x−
e

c
(~̇x× ~B) = ~F (t) + ~f(t). (8.5)

Introducing

Z̃i(ω) =
∫ ∞

0
dteiωtZi(t) (i = 1, 2, 3, 4;Z1 = γ, Z2 = qβ, Z3 = Fα, Z4 = fα), (8.6)

where εαβρ is the Levi-Civita symbol, and α, β, ρ are the three spatial directions (i.e.

α, β, ρ = x, y, z), we can rewrite Eq. (8.5) in a Fourier transformed form :

[

(m(ω2
0 − ω2) − iωγ̃(ω))δαβ + iω

e

c
εαβρBρ

]

x̃β(ω) = F̃α(ω) + f̃α(ω). (8.7)

Equation (8.7) can be recast as the inverse of Eq. (8.5) in the Fourier space:

Yαβ(ω)x̃β(ω) = [F̃α(ω) + f̃α(ω)], (8.8)

with

Y (ω) =









∆(ω) iω e
c
Bz −iω e

c
By

−iω e
c
Bz ∆(ω) iω e

c
Bx

iω e
c
By −iω e

c
Bx ∆(ω)









, (8.9)

where ∆(ω) = m(ω2
0 − ω2) − iωγ̃(ω). From linear response theory one can write [13]

xα(t) =
∫ t

−∞
dsχαβ(t− s)(Fβ(s) + fβ(s)), (8.10)

where χαβ is the generalised susceptibility tensor. In Fourier transformed form Eq. (8.10)

becomes

x̃α(ω) = χαβ(ω)[F̃β(ω) + f̃β(ω)]. (8.11)

Comparing Eq. (8.11) with Eq. (8.8) the generalised susceptibility can be evaluated from

the following equation :

χαβ = [Y −1(ω)]αβ, (8.12)

Clearly

χ(ω) =
1

det[Y (ω)]









χxx χxy χxz

χyx χyy χyz

χzx χzy χzz









, (8.13)
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where

det[Y (ω)] = ∆(ω)[∆2(ω) − (ω
e

c
)2 ~B2];

χii = ∆2(ω) − (ω
e

c
)2B2

i , (i = x, y, z);

χxy = χ∗yx = −(ω
e

c
)2BxBy − iω

e

c
Bz∆(ω);

χxz = χ∗zx = −(ω
e

c
)2BxBz + iω

e

c
By∆(ω);

χyz = χ∗zy = −(ω
e

c
)2ByBz − iω

e

c
Bα∆(ω), (8.14)

where (∗) denotes the complex conjugate of the corresponding variable. The expression

is simplified when the magnetic field is taken along z axis, thus

χ(ω) =
1

det[Y (ω)]









∆2(ω) −iω e
c
∆(ω)B 0

iω e
c
∆(ω)B ∆2(ω) 0

0 0 ∆2(ω) − (ω e
c
)2B2









. (8.15)

For this particular case the real part of the susceptibility is

χ′xx = χ′yy =
1

2m2

[ (ω2
0 − ω2 + ωωc/2)

(ω2 − ω2
0 + ωωc)2 + ω2γ̃2(ω)

m2

+
(ω2

0 − ω2 − ωωc/2)

(ω2 − ω2
0 − ωωc)2 + ω2γ̃2(ω)

m2

]

, (8.16)

and the imaginary part is

χ′′xx = χ′′yy =
γ̃(ω)ω

2m2

[ 1

(ω2 − ω2
0 + ωωc)2 + ω2γ̃2(ω)

m2

+
1

(ω2 − ω2
0 − ωωc)2 + ω2γ̃2(ω)

m2

]

, (8.17)

where the cyclotron frequency ωc = eB
mc

. For the ohmic dissipation case the susceptibility

has four poles at

ω = ±ω̃+ =
[ωc + iγ

2
±

√

4ω2
0 + ω2

c − γ2 + 2iωcγ

2

]

ω = ±ω̃− =
[−ωc + iγ

2
±

√

4ω2
0 + ω2

c − γ2 − 2iωcγ

2

]

. (8.18)

On the other hand, for the non-ohmic case these poles cannot be evaluated analytically.

The numerical results for the ohmic dissipation as well as non-ohmic dissipation cases are

presented below.

We plot in Fig. (8.1) the dissipative part of the x-component of susceptibility i.e. χ′′xx(ω)
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Figure 8.1: The imaginary part of susceptibility χxx (a) ohmic dissipation case (J(ω) ∼ ω)

for two ωc values. (b) ohmic dissipation case for two γ values. (c) Non-ohmic dissipation

case (J(ω) ∼ ω3) for two ωc values. (d) Non-ohmic dissipation case for two γ values.

versus ω for different values of ωc and γ in accordance with Eq. (8.16). We note that

χ′′xx(ω) is odd in ω for the ohmic dissipation case and has Lorentzian line shapes for finite

damping values, with peaks centered at the poles. For the non-ohmic case χ′′xx(ω) is even

in ω. It is evident from Fig. (8.1-b) that for finite but weak damping one can obtain all

the four peaks for the ohmic dissipation case whereas for high damping only two peaks

are obtained. The same is true for the non-ohmic case (Fig. (8.1-d)). The only differ-

ence is that the magnitude of the peak height is higher for the non-ohmic case and is

always positive. Also the peak width increases with the increase of γ for both ohmic and

non-ohmic cases. On the other hand the width of the peak decreases with the increase of

ωc, as is expected on physical grounds. In the non-ohmic case the number of peaks also

increases from two to four with the increase of ωc, whereas it remains two for the ohmic

case with the increase of ωc, if γ is kept large. Thus, dissipative effects are stronger for

the ohmic case.

In Fig. (8.2) we plot the reactive or the real part of the x-component of susceptibility

(χ′xx(ω)) versus ω for different values of ωc and γ in accordance with Eq. (8.16). χ′xx(ω)
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Figure 8.2: The real part of susceptibility χxx (a) ohmic dissipation case (J(ω) ∼ ω) for

two ωc values. (b) ohmic dissipation case for two γ values. (c) Non-ohmic dissipation case

(J(ω) ∼ ω3) for two ωc values. (d) Non-ohmic dissipation case for two γ values.

is odd in ω for the ohmic as well as non-ohmic cases. The spreading of the peaks in-

creases but the peak height decreases with the decrease of ωc for the ohmic case. On the

other hand both the spreading and peak height decrease with the decrease of ωc for the

non-ohmic case. But the features are the same with the variation of γ for both ohmic

and non-ohmic cases —- the peak height increases but the spreading decreases with the

decrease of γ. In addition the number of peaks increases from one to two with the decrease

of γ in the ohmic as well as non-ohmic cases.

The z component of the susceptibility tensor is of course the same as that of a damped

harmonic oscillator because it has no relation to the cyclotron frequenc ωc.

8.4 Fluctuation - Dissipation Relationship & Equivalence of Ein-

stein and Gibbs Approaches.

In section 8.3 we calculated the susceptibility as the asymptotic (i.e. t → ∞) response

from a fully time-dependent formulation of the underlying QLE. Because detailed balance
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relations (viz. Eqs. (8.2) and (8.3)) are built-in within the QLE, as the heat bath is

assumed to be in thermal equilibrium at a fixed temperature T, the asymptotic response

is expected to be related to the equilibrium properties of the system. This expectation

is at the heart of what Kadanoff calls the Einstein approach to Statistical Mechanics

[145] in which equilibrium answers are sought to be obtained from the asymptotic limit

of time-dependent results. It is then natural to ask whether the response obtained from

the Einstein approach can be related to spontaneous or equilibrium fluctuations that

can be independently calculated from the standard Gibbsian formulation of equilibrium

Statistical Mechanics (derived in the chapter 7). If we can establish this relation it

will not only be tantamount to establishing the fluctuation-dissipation theorem for the

phenomenon at hand, but also to demonstrating the equivalence of the Einstein and the

Gibbs approaches to Statistical Mechanics [92].

Now combining Eq. (8.17) with the Fourier transformed form of equilibrium position

autocorrelation function i.e. Eq.(7.34) one can easily show that

C̃(ω) =
2h̄

1 − exp(−βh̄ω)
χ′′xx(ω). (8.19)

The equation (8.19) represents the fluctuation-dissipation theorem in the context of dissi-

pative Landau diamagnetism. The position autocorrelation function describes the spon-

taneous fluctuations of the system while the imaginary part of the dynamic susceptibility

χ′′xx determines the energy dissipation in the system due to work done by an external weak

force.

We use some of the results derived in the previous chapter (a la Gibbs) in this chapter to

show that dissipative diamagnetism provides an elegantly pedagogical toy model within

which equilibrium and non-equilibrium statistical mechanics can be holistically combined.

The Eq.(7.26) of the previous chapter yields the asymptotic result of Dattagupta and

Singh[140], for ν0 = 0 (cf. Eq. (19) of Dattagupta and Singh [140]). We demonstrate this

below, for ohmic dissipation, since only the latter case was considered in Dattagupta and

Singh [140]. In the so-called ohmic dissipation model [143]

J(ω) = Mγω. (8.20)
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Now Eq.(19) of Dattagupta and Singh [140], based on the Einstein approach of dissipative

diamagnetism, can be recast as follows:

Mz =
|e|h̄
2Mc

{

∞
∑

n=1

4nπζνc

(ν2
c + ζ2 − n2π2)2 + 4n2π2ν2

c

(8.21)

+<
[ 1

(νc − iζ)
− coth(νc − iζ)

]}

.

Note that the term inside the square parentheses is just the Landau contribution with

however a complex cyclotron frequency with damping ζ as the imaginary component. Over

and above this is the further contribution, solely dependent on damping, given by the first

term (involving a summation over n) within the curly brackets. Using the identity

coth(z) =
1

z
+
∞
∑

n=1

2z

(z2 + n2π2)
, (8.22)

one can rewrite Eq.(8.21) as follows:

Mz =
|e|h̄
2Mc

{

∞
∑

n=1

4nπζνc

(ν2
c + ζ2 − n2π2)2 + 4n2π2ν2

c

(8.23)

−<
∞
∑

n=1

2(νc − iζ)

(νc − iζ)2 + n2π2

}

.

After some algebra one can express Mz as

Mz = −|e|h̄
Mc

νc

∞
∑

n=1

1

ν2
c + (ζ + nπ)2 , (8.24)

which equals Eq.(7.24) in the limit ν0 → 0.

Thus we are able to establish the equivalence of the Einstein approach to statistical

mechanics in which the equilibrium answers are sought to be obtained from the asymp-

totic limit of time-dependent results and the conventional equilibrium Gibbsian ensem-

ble approach for the phenomena of Landau dissipative diamagnetism. In establishing

fluctuation-dissipation relationship, we derive the imaginary part of the dynamical sus-

ceptibility from the QLE like Eq. 8.1 (a la Einstein) and then connect it with that of

the equilibrium position autocorrelation function (a la Gibbs). In the second case, we

recast Eq. (19) of Dattagupta and Singh [140] in such a form that it matches with the

equilibrium answer of Landau dissipative diamagnetism (Eq. 7.24) derived in the previous

chapter on the basis of equilibrium Gibbsian ensemble approach.
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8.5 Coherence - Decoherence Transition

In this section our discussion is focused on the destruction of quantum coherence by

environment-induced dissipation in the context of Landau diamagnetism. Two questions

are relevant: (i) Can we quantify the criterion for crossover from coherent to decoherent

dynamics ? (ii) Is this criterion universal ? As far as some model systems are concerned,

the answer to (i) is in the affirmative [179, 168]. Regarding the question (ii), there seems

to be no universality in the criterion of crossover. As a matter of fact, the value of the

crossover parameter depends on the particular quantity under consideration and its initial

preparation. Thus, quantum memory effects play a crucial role as the system makes a

transition from the coherent to the decoherent regime. To clarify this issue we focus on

dissipative diamagnetism and consider its T = 0 behavior, wherein quantum coherence is

the most prominent. Here we follow the discussion of Egger et al [179].

We start with the QLE for dissipative Landau diamagnetism subject to Ohmic damping.

The motion in the x-y plane can be expressed in the compact form:

Z̈ + γ̄Ż + ω2
0Z =

θ(t)

m
, (8.25)

where Z = x + iy, γ̄ = γ + iωc, and θ = Fx + iFy. Thus, the time-dependence of the

corresponding classical quantity (a la Ehrenfest) is governed by the following equation:

〈Z̈〉 + γ̄〈Ż〉 + ω2
0〈Z〉 =

θ(t)

m
, (8.26)

where the angular brackets represent statistical averages over the ground state properties

(T = 0), i.e. the expectation values. As discussed earlier the response to an external force

is characterized by the generalised susceptibility χosc(t) [13]:

〈Z(t)〉 =
1

mω0

∫ t

−∞
dt′χosc(t− t′)θ(t′). (8.27)

From Eqs. (8.26) and (8.27), we obtain the Fourier transform of χosc(t) as

χosc(ω) =
ω0

ω2
0 − ω2 − iγ̄ω

. (8.28)

On the other hand, using the fluctuation-dissipation theorem [13], χosc(ω) can be related

to the spectral function Sosc(ω), which in turn determines the equilibrium correlation
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function Cosc(ω). The functional relationship which holds at T = 0 is as follows:

=χosc(ω) = ωSosc(ω) =
ω

|ω|Cosc(ω), (8.29)

where Cosc(t) = <〈Z(t)Z(0)〉. Using Eqs. (8.28) and (8.29), we obtain the spectral

function

Sosc(ω) =
γω0

(ω2
0 − ω2 + ωωc)2 + γ2ω2

. (8.30)
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Figure 8.3: Spectral function Sosc(ω) vs. ω with Ohmic dissipation for dissipative Landau

diamagnetism for different parameter values.

The quantity Sosc(ω) can be used as a signature for the transition from coherence to

decoherence: Sosc(ω) has two inelastic peaks at ωm = ω0

2

[

− κ2 ±
√

4 − κ2
1 + κ2

2

]

for weak
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Figure 8.4: Spectral function Sosc(ω) vs. ω with Ohmic dissipation for a damped harmonic

oscillator for different parameter values.

damping, where κ1 and κ2 are dimensionless parameters defined by κ1 = γ
ω0

and κ2 = ωc

ω0
.

These two quantities are employed as the crossover parameters to quantify the coherence

to decoherence transition. Defining κ̄2 = κ2
1 + κ2

2, we can say that below the critical

coherent criterium (defined below, c.f. Eq. (8.33)) i.e. κ̄2 < κ̄2
c, the function Sosc(ω)

exhibits two inelastic peaks which are evident from Fig. (8.4) in which we plot Sosc(ω)

vs. ω for different κ1 and κ2. At the critical coherent criterium (c.f. Eq. (8.33)) the two

peaks merge into a single quasielastic peak. The latter persists for κ̄2 > κ̄2
c. Since the

quasielastic peak is centered near ω ' 0, we can make a small-ω expansion of Sosc(ω):

Sosc(ω) ' κ1χ
2
0

[

1 − κ2χ0ω + (2 − κ2
1 − κ2

2)χ
2
0ω

2 +O(ω3)
]

, (8.31)
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where χ0 = 1
ω0

. The critical line is determined by inspecting the sign of the curvature of

Sosc(ω). The latter is positive (implying coherence) if d2Sosc(ω)
dω2 > 0, or

κ̄2 = κ2
1 + κ2

2 < 2. (8.32)

But the curvature changes sign at the critical line:

κ̄2
c = κ2

1 + κ2
2 = 2, (8.33)

and hence the system goes to the decoherent region when

κ̄2 = κ2
1 + κ2

2 > 2. (8.34)

It is illustrative to compare this behaviour with that of the damped harmonic oscillator

which was discussed by Egger et al [179]. From Figs. (8.4) and (8.5) one notes that

for the damped oscillator case Sosc(ω) has two inelastic peaks of equal height for weak

damping. As the one-parameter damping strength increases these two peaks approach

each other and at the critical damping strength (αc) the two peaks merge into a single

quasielastic peak at ω = 0 which persists for α > αc. On the other hand, for dissipative

diamagnetism, the coherent-decoherent transition is to be examined in a two-parameter

plane, defined by κ1 and κ2. One obtains two inelastic peaks which are not of equal height

for low values of κ1 and κ2 because the peaks are not symmetric on either side of ω = 0.

As one increases κ1 and κ2 the peak height of the small peak decreases and eventually

vanishes at the critical line to yield a single peak which is not at ω = 0, but near ω = 0.

Above the critical line the single quasielastic peak persists.

We turn next to a different criterion for quantifying the transition from coherence to

decoherence, which is based on the quantity Posc(t), defined as follows:

Posc(t) =
〈Z(t)〉
Z0

. (8.35)

We are interested in the relaxation of the expectation value 〈Z(t)〉 starting from a non-

equilibrium initial state. Applying the force F (t) = mω2
0Z0 for t < 0, the initial condition

〈Z(0)〉 = Z0 is prepared and the corresponding dynamical quantity Posc(t) is computed,

after switching off the force F (t), at t = 0. Following the damped quantum harmonic
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oscillator case [179] we may now write

Posc(t) = <
[cos(Ω̄t− φ̄) exp(− γ̄t

2
)

cos(φ̄)

]

, (8.36)

where

Ω̄ =

√

ω2
0 −

γ̄2

4
= Ω′ + iΩ′′

φ̄ = <[tan−1(
γ̄

2Ω̄
]. (8.37)

Defining a = (ω2
0 + ω2

c

4
− γ2

4
) and b = γωc

2
,

Ω′ =
1√
2

√

a+
√
a2 + b2,

Ω′′ =
1√
2

√√
a2 + b2 − a,

φ̄ = tan−1(X),

X =
γΩ′ + Ω′′ωc

2(Ω′2 + Ω′′ωc)
, (8.38)

we find

Posc(t) =
[cos(Ω′t− φ̄) cos(Ω′′t) cos(ωct

2
) − sin(Ω′t− φ̄) sin(Ω′′t) sin(ωct

2
)

cos(φ̄)

]

exp(−γt
2

).

(8.39)

The signature of coherence is now damped-oscillatory behavior if b2 > 0 and a2 + b2 > 0.

Thus the important inequality condition for the system to be coherent is:

(1 − κ2
1 + κ2

2)
2 +

(κ1κ2)
2

4
> 0. (8.40)

The system crosses over to relaxational (decoherent) behavior at the critical line

(1 − κ2
1

4
+
κ2

2

4
)2 +

(κ1κ2)
2

4
= 0, (8.41)

which is clearly different from the criterium mentioned above (cf. Eq. (8.33)). Thus

the criterion for crossover from coherence to decoherence depends on the specific physical

quantity considered. This conclusion is similar to the cases of damped quantum harmonic

oscillator as well as the spin-Boson model [179].
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8.6 Summary and Conclusions

We have analyzed here an exact treatment of the Feynman-Vernon model of a charged

Brownian particle in a magnetic field in the quantum dissipative regime. Starting from

the QLE we have derived the generalised susceptibility tensor, and have discussed its

real and imaginary parts for the particular case when the magnetic field ~B is along the

z axis. In the chapter 7, we have calculated the position autocorrelation function that

measures the spontaneous fluctuations of the system degrees of freedom due to coupling

with the environment by following the Gibbsian ensemble approach. The latter has been

shown to be related to the imaginary part of the susceptibility that measures the energy

dissipation of the system due to irreversible energy transfer between the system and the

environment. The aforesaid treatment then exemplifies the fluctuation-dissipation theo-

rem in the context of dissipative diamagnetism as well as establishes the equivalence of

the Einstein and the Gibbs approaches to Statistical Mechanics, for the case at hand.

Environment-induced decoherence is an important issue in mesoscopic systems and quan-

tum information processes. We have discussed this in the context of dissipative diamag-

netism and have argued that the transition from the Landau to the Bohr-Van Leeuwen

regime can indeed be viewed as a coherence to decoherence transition. Further it has

been demonstrated that the initial preparation of a dissipative quantum system leads to

abrupt changes regarding the criterion for coherent to decoherent transition. As in glassy

systems characterized by hysteretic behavior, quantum systems also exhibit memory of

their initial state of preparation.

In conclusion, we have presented a unified treatment of threefold response, i.e. fluctu-

ation, dissipation and decoherence of a system due to its coupling with environment in

the context of the contemporarily important topic of dissipative diamagnetism. We have

established the equivalence of the equilibrium and non-equilibrium statistical physics for a

phenomenon like Landau-Drude diamagnetism, which is inherently quantum and strongly

dependent on boundary effects. Finally, we have demonstrated that the coherent to in-

coherent transition depends to a large degree on the particular dynamical quantity under

consideration (e.g. correlation function, occupation probability etc.), as well as initial

conditions of preparation. Our derived results should be of some interest in the presently

active area of mesoscopic structures.
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Chapter 9

Summary

In this concluding chapter we summarize briefly the contents of this thesis. The thesis

is primarily based on the concepts of “Brownian motion”. We have discussed both the

classical as well as quantum Brownian motion. In most cases we are motivated by some

experimental measurements. So there is a close connection between our theoretical study

and the experimental measurements of ours as well as other groups.

We begin our discussion from the classical rotational “Brownian” motion of nanomagnetic

particles. The single domain nanoparticle undergoes a rotational Brownian movement

surmounting an anisotropic potential barrier. In Chapter 2 we have demonstrated the

equilibrium magnetic and caloric properties of a collection of non-interacting single do-

main particles. In this context we have analyzed the differences between the progressive

freezing of supermoments and spinglass phase transition. The divergence of nonlinear

susceptibilities in the two cases helps us in discriminating these two processes. This work

is motivated by the experimental observation of Bitoh et al [33].

In Chapter 3 we turned to different non-equilibrium phenomena observed in single domain

nanoparticles. We have discussed the memory effect observed in nanomagnetic particles

in the field-cool (FC) magnetization measurements under a certain heating and cooling

protocol. We are motivated in this work by the experimental observation of Sun et al

[20]. We further discuss the relaxation theory of the single domain nanoparticles. In this

context we introduce the effect of dipole-dipole interaction on the relaxation rate. It has

been observed that one can obtain a plethora of relaxation rates by varying the sizes of the

particles even a tiny bit. Thus one can observe polydispersity induced slow dynamics in

the non-interacting “supermoments”. We have demonstrated the polydispersity induced
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“memory effect” by considering a bimodal distribution in volume. In the next chapter we

have discussed the memory effect observed in the field cool (FC) and zero field cool (ZFC)

relaxation measurements under different field and temperature protocols. We have also

differentiated between the two types of slow dynamics observed in the non-interacting and

interacting single domain nanoparticles. One can easily observe a flat FC magnetization

curve for the interacting system whereas one can observe an increasing FC magnetization

curve for the non-interacting system. In the non-interacting case one can not find any

memory in the double memory experiment in the ZFC protocol. On the other hand one

can easily observe a dip in the double memory experiment in the ZFC method for the

interacting system.

In Chapter 5 we have discussed the variation of coercivity with the particle size. We

have introduced a stochastic model and have explained the experimental observation of

Luna et al [78]. We had to consider two regimes - the single domain regime demonstrates

the increasing part of the coercivity versus particle size curve. On the other hand the

decreasing part of the curve is explained by assuming a multidomain regime and with the

help of supersymmetry Quantum mechanics (SUSY QM).

In Chapter 6 we consider the translational Brownian motion of an underdamped particle

in the presence of a space periodic potential and a high frequency space dependent time

periodic force. We observe the long time behaviour of such an underdamped Brown-

ian particle. In the Kapitza time window in which the observation time is much longer

than any relevant time scales of the system, one can obtain a time-independent effective

potential in which the underdamped Brownian particle moves. One can then observe

“Stochastic Resonance”, i.e., the enhancement of the diffusion coefficient in the presence

of an external time periodic force, space-periodic potential and thermal noise. So we

observe that the optimal mixing of space periodic force, time periodic external high fre-

quency field and thermal noise is much more effective than the usual diffusion mechanism.

We acronym this enhancement of diffusion as “stochastic resonance” (SR).

In the last two chapters of this thesis we turn from classical to quantum Brownian motion

of a charged particle in the presence of an external magnetic field, is interacting with

the environment, which is modeled as a collection of harmonic oscillators. In Chapter

7 we have discussed the dissipative diamagnetism which is inherently a quantum phe-
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nomenon. We are motivated in this work by the discussion of L. P. Kadanoff on different

approaches of statistical mechanics in his book [145]. In this book Kadanoff analyses

about Einstein’s approach in which one can derive the equilibrium answers from the non-

equilibrium Langevin equations by taking the asymptotic limit (t→ ∞). We have shown

the equivalence of the Einstein approach and the usual Gibbsian ensemble approach in

the context of dissipative diamagnetism. We have shown that at large dissipation, the

dissipative diamagnetism vanishes and it goes to the classical regime. In this context we

have discussed the effect of boundary electrons which is essential in the study of meso-

scopic structure. In addition, we have demonstrated that the appearance of dissipative

parameter (γ) in the equilibrium answer is completely a quantum phenomenon.

In Chapter 8 we consider the effect of environmental coupling of the system which consists

of a charged particle moving in a constant magnetic field. We have discussed the three-

fold response i.e. fluctuation, dissipation and decoherence in the context of dissipative

diamagnetism. Starting from a ‘non-equilibrium’ quantum Langevin equation (QLE), we

calculate the generalized susceptibility tensor. We connect the imaginary part of this

susceptibility tensor with that of the position autocorrelation function calculated from

the equilibrium Gibbsian ensemble approach. Thus it not only establishes a relationship

between the position autocorrelation function and the imaginary part of the susceptibil-

ity —- a statement of the fluctuation-dissipation theorem, but also unifies equilibrium

Gibbsian ensemble approach and the Einstein approach in the context of Landau-Drude

diamagnetism. We also provide a treatment of the environment induced coherence to

decoherence transition in the context of Landau-Drude diamagnetism. In this context

we have demonstrated elaborately that the initial state of preparation of a dissipative

quantum systems leads to abrupt changes regarding the criterion for coherent- to - deco-

herent transition. Thus quantum dissipative systems exhibit memory of their initial state

of preparation.
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